174 research outputs found

    ICAPS 2012. Proceedings of the third Workshop on the International Planning Competition

    Get PDF
    22nd International Conference on Automated Planning and Scheduling. June 25-29, 2012, Atibaia, Sao Paulo (Brazil). Proceedings of the 3rd the International Planning CompetitionThe Academic Advising Planning Domain / Joshua T. Guerin, Josiah P. Hanna, Libby Ferland, Nicholas Mattei, and Judy Goldsmith. -- Leveraging Classical Planners through Translations / Ronen I. Brafman, Guy Shani, and Ran Taig. -- Advances in BDD Search: Filtering, Partitioning, and Bidirectionally Blind / Stefan Edelkamp, Peter Kissmann, and Álvaro Torralba. -- A Multi-Agent Extension of PDDL3.1 / Daniel L. Kovacs. -- Mining IPC-2011 Results / Isabel Cenamor, Tomás de la Rosa, and Fernando Fernández. -- How Good is the Performance of the Best Portfolio in IPC-2011? / Sergio Nuñez, Daniel Borrajo, and Carlos Linares López. -- “Type Problem in Domain Description!” or, Outsiders’ Suggestions for PDDL Improvement / Robert P. Goldman and Peter KellerEn prens

    Algorithmic Thomas Decomposition of Algebraic and Differential Systems

    Full text link
    In this paper, we consider systems of algebraic and non-linear partial differential equations and inequations. We decompose these systems into so-called simple subsystems and thereby partition the set of solutions. For algebraic systems, simplicity means triangularity, square-freeness and non-vanishing initials. Differential simplicity extends algebraic simplicity with involutivity. We build upon the constructive ideas of J. M. Thomas and develop them into a new algorithm for disjoint decomposition. The given paper is a revised version of a previous paper and includes the proofs of correctness and termination of our decomposition algorithm. In addition, we illustrate the algorithm with further instructive examples and describe its Maple implementation together with an experimental comparison to some other triangular decomposition algorithms.Comment: arXiv admin note: substantial text overlap with arXiv:1008.376

    Analysis of Hardware Descriptions

    Get PDF
    The design process for integrated circuits requires a lot of analysis of circuit descriptions. An important class of analyses determines how easy it will be to determine if a physical component suffers from any manufacturing errors. As circuit complexities grow rapidly, the problem of testing circuits also becomes increasingly difficult. This thesis explores the potential for analysing a recent high level hardware description language called Ruby. In particular, we are interested in performing testability analyses of Ruby circuit descriptions. Ruby is ammenable to algebraic manipulation, so we have sought transformations that improve testability while preserving behaviour. The analysis of Ruby descriptions is performed by adapting a technique called abstract interpretation. This has been used successfully to analyse functional programs. This technique is most applicable where the analysis to be captured operates over structures isomorphic to the structure of the circuit. Many digital systems analysis tools require the circuit description to be given in some special form. This can lead to inconsistency between representations, and involves additional work converting between representations. We propose using the original description medium, in this case Ruby, for performing analyses. A related technique, called non-standard interpretation, is shown to be very useful for capturing many circuit analyses. An implementation of a system that performs non-standard interpretation forms the central part of the work. This allows Ruby descriptions to be analysed using alternative interpretations such test pattern generation and circuit layout interpretations. This system follows a similar approach to Boute's system semantics work and O'Donnell's work on Hydra. However, we have allowed a larger class of interpretations to be captured and offer a richer description language. The implementation presented here is constructed to allow a large degree of code sharing between different analyses. Several analyses have been implemented including simulation, test pattern generation and circuit layout. Non-standard interpretation provides a good framework for implementing these analyses. A general model for making non-standard interpretations is presented. Combining forms that combine two interpretations to produce a new interpretation are also introduced. This allows complex circuit analyses to be decomposed in a modular manner into smaller circuit analyses which can be built independently

    Formal methods for motion planning and control in dynamic and partially known environments

    Full text link
    This thesis is motivated by time and safety critical applications involving the use of autonomous vehicles to accomplish complex tasks in dynamic and partially known environments. We use temporal logic to formally express such complex tasks. Temporal logic specifications generalize the classical notions of stability and reachability widely studied within the control and hybrid systems communities. Given a model describing the motion of a robotic system in an environment and a formal task specification, the aim is to automatically synthesize a control policy that guarantees the satisfaction of the specification. This thesis presents novel control synthesis algorithms to tackle the problem of motion planning from temporal logic specifications in uncertain environments. For each one of the planning and control synthesis problems addressed in this dissertation, the proposed algorithms are implemented, evaluated, and validated thought experiments and/or simulations. The first part of this thesis focuses on a mobile robot whose success is measured by the completion of temporal logic tasks within a given period of time. In addition to such time constraints, the planning algorithm must also deal with the uncertainty that arises from the changes in the robot's workspace during task execution. In particular, we consider a robot deployed in a partitioned environment subjected to structural changes such as doors that can open and close. The motion of the robot is modeled as a continuous time Markov decision process and the robot's mission is expressed as a Continuous Stochastic Logic (CSL) formula. A complete framework to find a control strategy that satisfies a specification given as a CSL formula is introduced. The second part of this thesis addresses the synthesis of controllers that guarantee the satisfaction of a task specification expressed as a syntactically co-safe Linear Temporal Logic (scLTL) formula. In this case, uncertainty is characterized by the partial knowledge of the robot's environment. Two scenarios are considered. First, a distributed team of robots required to satisfy the specification over a set of service requests occurring at the vertices of a known graph representing the environment is examined. Second, a single agent motion planning problem from the specification over a set of properties known to be satised at the vertices of the known graph environment is studied. In both cases, we exploit the existence of o-the-shelf model checking and runtime verification tools, the efficiency of graph search algorithms, and the efficacy of exploration techniques to solve the motion planning problem constrained by the absence of complete information about the environment. The final part of this thesis extends uncertainty beyond the absence of a complete knowledge of the environment described above by considering a robot equipped with a noisy sensing system. In particular, the robot is tasked with satisfying a scLTL specification over a set of regions of interest known to be present in the environment. In such a case, although the robot is able to measure the properties characterizing such regions of interest, precisely determining the identity of these regions is not feasible. A mixed observability Markov decision process is used to represent the robot's actuation and sensing models. The control synthesis problem from scLTL formulas is then formulated as a maximum probability reachability problem on this model. The integration of dynamic programming, formal methods, and frontier-based exploration tools allow us to derive an algorithm to solve such a reachability problem

    Parameter Synthesis for Markov Models

    Full text link
    Markov chain analysis is a key technique in reliability engineering. A practical obstacle is that all probabilities in Markov models need to be known. However, system quantities such as failure rates or packet loss ratios, etc. are often not---or only partially---known. This motivates considering parametric models with transitions labeled with functions over parameters. Whereas traditional Markov chain analysis evaluates a reliability metric for a single, fixed set of probabilities, analysing parametric Markov models focuses on synthesising parameter values that establish a given reliability or performance specification φ\varphi. Examples are: what component failure rates ensure the probability of a system breakdown to be below 0.00000001?, or which failure rates maximise reliability? This paper presents various analysis algorithms for parametric Markov chains and Markov decision processes. We focus on three problems: (a) do all parameter values within a given region satisfy φ\varphi?, (b) which regions satisfy φ\varphi and which ones do not?, and (c) an approximate version of (b) focusing on covering a large fraction of all possible parameter values. We give a detailed account of the various algorithms, present a software tool realising these techniques, and report on an extensive experimental evaluation on benchmarks that span a wide range of applications.Comment: 38 page

    Acta Cybernetica : Volume 18. Number 4.

    Get PDF

    Cooperative Navigation for Low-bandwidth Mobile Acoustic Networks.

    Full text link
    This thesis reports on the design and validation of estimation and planning algorithms for underwater vehicle cooperative localization. While attitude and depth are easily instrumented with bounded-error, autonomous underwater vehicles (AUVs) have no internal sensor that directly observes XY position. The global positioning system (GPS) and other radio-based navigation techniques are not available because of the strong attenuation of electromagnetic signals in seawater. The navigation algorithms presented herein fuse local body-frame rate and attitude measurements with range observations between vehicles within a decentralized architecture. The acoustic communication channel is both unreliable and low bandwidth, precluding many state-of-the-art terrestrial cooperative navigation algorithms. We exploit the underlying structure of a post-process centralized estimator in order to derive two real-time decentralized estimation frameworks. First, the origin state method enables a client vehicle to exactly reproduce the corresponding centralized estimate within a server-to-client vehicle network. Second, a graph-based navigation framework produces an approximate reconstruction of the centralized estimate onboard each vehicle. Finally, we present a method to plan a locally optimal server path to localize a client vehicle along a desired nominal trajectory. The planning algorithm introduces a probabilistic channel model into prior Gaussian belief space planning frameworks. In summary, cooperative localization reduces XY position error growth within underwater vehicle networks. Moreover, these methods remove the reliance on static beacon networks, which do not scale to large vehicle networks and limit the range of operations. Each proposed localization algorithm was validated in full-scale AUV field trials. The planning framework was evaluated through numerical simulation.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113428/1/jmwalls_1.pd

    Cooperative planning in multi-agent systems

    Full text link
    Tesis por compendio[EN] Automated planning is a centralized process in which a single planning entity, or agent, synthesizes a course of action, or plan, that satisfies a desired set of goals from an initial situation. A Multi-Agent System (MAS) is a distributed system where a group of autonomous agents pursue their own goals in a reactive, proactive and social way. Multi-Agent Planning (MAP) is a novel research field that emerges as the integration of automated planning in MAS. Agents are endowed with planning capabilities and their mission is to find a course of action that attains the goals of the MAP task. MAP generalizes the problem of automated planning in domains where several agents plan and act together by combining their knowledge, information and capabilities. In cooperative MAP, agents are assumed to be collaborative and work together towards the joint construction of a competent plan that solves a set of common goals. There exist different methods to address this objective, which vary according to the typology and coordination needs of the MAP task to solve; that is, to which extent agents are able to make their own local plans without affecting the activities of the other agents. The present PhD thesis focuses on the design, development and experimental evaluation of a general-purpose and domain-independent resolution framework that solves cooperative MAP tasks of different typology and complexity. More precisely, our model performs a multi-agent multi-heuristic search over a plan space. Agents make use of an embedded search engine based on forward-chaining Partial Order Planning to successively build refinement plans starting from an initial empty plan while they jointly explore a multi-agent search tree. All the reasoning processes, algorithms and coordination protocols are fully distributed among the planning agents and guarantee the preservation of the agents' private information. The multi-agent search is guided through the alternation of two state-based heuristic functions. These heuristic estimators use the global information on the MAP task instead of the local projections of the task of each agent. The experimental evaluation shows the effectiveness of our multi-heuristic search scheme, obtaining significant results in a wide variety of cooperative MAP tasks adapted from the benchmarks of the International Planning Competition.[ES] La planificación automática es un proceso centralizado en el que una única entidad de planificación, o agente, sintetiza un curso de acción, o plan, que satisface un conjunto deseado de objetivos a partir de una situación inicial. Un Sistema Multi-Agente (SMA) es un sistema distribuido en el que un grupo de agentes autónomos persiguen sus propias metas de forma reactiva, proactiva y social. La Planificación Multi-Agente (PMA) es un nuevo campo de investigación que surge de la integración de planificación automática en SMA. Los agentes disponen de capacidades de planificación y su propósito consiste en generar un curso de acción que alcance los objetivos de la tarea de PMA. La PMA generaliza el problema de planificación automática en dominios en los que diversos agentes planifican y actúan conjuntamente mediante la combinación de sus conocimientos, información y capacidades. En PMA cooperativa, se asume que los agentes son colaborativos y trabajan conjuntamente para la construcción de un plan competente que resuelva una serie de objetivos comunes. Existen distintos métodos para alcanzar este objetivo que varían de acuerdo a la tipología y las necesidades de coordinación de la tarea de PMA a resolver; esto es, hasta qué punto los agentes pueden generar sus propios planes locales sin afectar a las actividades de otros agentes. La presente tesis doctoral se centra en el diseño, desarrollo y evaluación experimental de una herramienta independiente del dominio y de propósito general para la resolución de tareas de PMA cooperativa de distinta tipología y nivel de complejidad. Particularmente, nuestro modelo realiza una búsqueda multi-agente y multi-heurística sobre el espacio de planes. Los agentes hacen uso de un motor de búsqueda embebido basado en Planificación de Orden Parcial de encadenamiento progresivo para generar planes refinamiento de forma sucesiva mientras exploran conjuntamente el árbol de búsqueda multiagente. Todos los procesos de razonamiento, algoritmos y protocolos de coordinación están totalmente distribuidos entre los agentes y garantizan la preservación de la información privada de los agentes. La búsqueda multi-agente se guía mediante la alternancia de dos funciones heurísticas basadas en estados. Estos estimadores heurísticos utilizan la información global de la tarea de PMA en lugar de las proyecciones locales de la tarea de cada agente. La evaluación experimental muestra la efectividad de nuestro esquema de búsqueda multi-heurístico, que obtiene resultados significativos en una amplia variedad de tareas de PMA cooperativa adaptadas a partir de los bancos de pruebas de las Competición Internacional de Planificación.[CA] La planificació automàtica és un procés centralitzat en el que una única entitat de planificació, o agent, sintetitza un curs d'acció, o pla, que satisfau un conjunt desitjat d'objectius a partir d'una situació inicial. Un Sistema Multi-Agent (SMA) és un sistema distribuït en el que un grup d'agents autònoms persegueixen les seues pròpies metes de forma reactiva, proactiva i social. La Planificació Multi-Agent (PMA) és un nou camp d'investigació que sorgeix de la integració de planificació automàtica en SMA. Els agents estan dotats de capacitats de planificació i el seu propòsit consisteix en generar un curs d'acció que aconseguisca els objectius de la tasca de PMA. La PMA generalitza el problema de planificació automàtica en dominis en què diversos agents planifiquen i actúen conjuntament mitjançant la combinació dels seus coneixements, informació i capacitats. En PMA cooperativa, s'assumeix que els agents són col·laboratius i treballen conjuntament per la construcció d'un pla competent que ressolga una sèrie d'objectius comuns. Existeixen diferents mètodes per assolir aquest objectiu que varien d'acord a la tipologia i les necessitats de coordinació de la tasca de PMA a ressoldre; és a dir, fins a quin punt els agents poden generar els seus propis plans locals sense afectar a les activitats d'altres agents. La present tesi doctoral es centra en el disseny, desenvolupament i avaluació experimental d'una ferramenta independent del domini i de propòsit general per la resolució de tasques de PMA cooperativa de diferent tipologia i nivell de complexitat. Particularment, el nostre model realitza una cerca multi-agent i multi-heuristica sobre l'espai de plans. Els agents fan ús d'un motor de cerca embegut en base a Planificació d'Ordre Parcial d'encadenament progressiu per generar plans de refinament de forma successiva mentre exploren conjuntament l'arbre de cerca multiagent. Tots els processos de raonament, algoritmes i protocols de coordinació estan totalment distribuïts entre els agents i garanteixen la preservació de la informació privada dels agents. La cerca multi-agent es guia mitjançant l'aternança de dues funcions heurístiques basades en estats. Aquests estimadors heurístics utilitzen la informació global de la tasca de PMA en lloc de les projeccions locals de la tasca de cada agent. L'avaluació experimental mostra l'efectivitat del nostre esquema de cerca multi-heurístic, que obté resultats significatius en una ampla varietat de tasques de PMA cooperativa adaptades a partir dels bancs de proves de la Competició Internacional de Planificació.Torreño Lerma, A. (2016). Cooperative planning in multi-agent systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/65815TESISPremiadoCompendi
    corecore