1,305 research outputs found

    Physical layer authenticated image encryption for Iot network based on biometric chaotic signature for MPFrFT OFDM system

    Get PDF
    In this paper, a new physical layer authenticated encryption (PLAE) scheme based on the multi-parameter fractional Fourier transform–Orthogonal frequency division multiplexing (MP-FrFT-OFDM) is suggested for secure image transmission over the IoT network. In addition, a new robust multi-cascaded chaotic modular fractional sine map (MCC-MF sine map) is designed and analyzed. Also, a new dynamic chaotic biometric signature (DCBS) generator based on combining the biometric signature and the proposed MCC-MF sine map random chaotic sequence output is also designed. The final output of the proposed DCBS generator is used as a dynamic secret key for the MPFrFT OFDM system in which the encryption process is applied in the frequency domain. The proposed DCBS secret key generator generates a very large key space of (Formula presented.). The proposed DCBS secret keys generator can achieve the confidentiality and authentication properties. Statistical analysis, differential analysis and a key sensitivity test are performed to estimate the security strengths of the proposed DCBS-MP-FrFT-OFDM cryptosystem over the IoT network. The experimental results show that the proposed DCBS-MP-FrFT-OFDM cryptosystem is robust against common signal processing attacks and provides a high security level for image encryption application. © 2023 by the authors

    Securing Wireless Communications of the Internet of Things from the Physical Layer, An Overview

    Get PDF
    The security of the Internet of Things (IoT) is receiving considerable interest as the low power constraints and complexity features of many IoT devices are limiting the use of conventional cryptographic techniques. This article provides an overview of recent research efforts on alternative approaches for securing IoT wireless communications at the physical layer, specifically the key topics of key generation and physical layer encryption. These schemes can be implemented and are lightweight, and thus offer practical solutions for providing effective IoT wireless security. Future research to make IoT-based physical layer security more robust and pervasive is also covered

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Design of an OFDM Physical Layer Encryption Scheme

    Get PDF
    This paper presents a new encryption scheme implemented at the physical layer of wireless networks employing orthogonal frequency-division multiplexing (OFDM). The new scheme obfuscates the subcarriers by randomly reserving several subcarriers for dummy data and resequences the training symbol by a new secure sequence. Subcarrier obfuscation renders the OFDM transmission more secure and random, whereas training symbol resequencing protects the entire physical layer packet but does not affect the normal functions of synchronization and channel estimation of legitimate users while preventing eavesdroppers from performing these functions. The security analysis shows that the system is robust to various attacks by analyzing the search space using an exhaustive key search. Our scheme is shown to perform better in terms of search space, key rate, and complexity in comparison with other OFDM physical layer encryption schemes. The scheme offers options for users to customize the security level and the key rate according to the hardware resource. Its low complexity nature also makes the scheme suitable for resource-limited devices. Details of practical design considerations are highlighted by applying the approach to an IEEE 802.11 OFDM system case study

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Enhanced Cauchy Matrix Reed-Solomon Codes and Role-Based Cryptographic Data Access for Data Recovery and Security in Cloud Environment

    Get PDF
    In computer systems ensuring proper authorization is a significant challenge, particularly with the rise of open systems and dispersed platforms like the cloud. Role-Based Access Control (RBAC) has been widely adopted in cloud server applications due to its popularity and versatility. When granting authorization access to data stored in the cloud for collecting evidence against offenders, computer forensic investigations play a crucial role. As cloud service providers may not always be reliable, data confidentiality should be ensured within the system. Additionally, a proper revocation procedure is essential for managing users whose credentials have expired.  With the increasing scale and distribution of storage systems, component failures have become more common, making fault tolerance a critical concern. In response to this, a secure data-sharing system has been developed, enabling secure key distribution and data sharing for dynamic groups using role-based access control and AES encryption technology. Data recovery involves storing duplicate data to withstand a certain level of data loss. To secure data across distributed systems, the erasure code method is employed. Erasure coding techniques, such as Reed-Solomon codes, have the potential to significantly reduce data storage costs while maintaining resilience against disk failures. In light of this, there is a growing interest from academia and the corporate world in developing innovative coding techniques for cloud storage systems. The research goal is to create a new coding scheme that enhances the efficiency of Reed-Solomon coding using the sophisticated Cauchy matrix to achieve fault toleranc
    corecore