40,550 research outputs found

    Neural Simulation of Water Systems for Efficient State Estimation

    Get PDF
    This paper presents a neural network based technique for the solution of a water system state estimation problem.The technique combines a neural linear equations solver with a Newton-Raphson iterations to obtain a solution to an overdetermined set of nonlinear equations. The algorithm has been applied to a realistic 34-node water network. By changing the values of neural network parameters both the least squares (LS) and least absolute values (LAV) estimates have been obtained and assessed with respect to their sensitivity to measurement errors

    Fast Neural Network Predictions from Constrained Aerodynamics Datasets

    Full text link
    Incorporating computational fluid dynamics in the design process of jets, spacecraft, or gas turbine engines is often challenged by the required computational resources and simulation time, which depend on the chosen physics-based computational models and grid resolutions. An ongoing problem in the field is how to simulate these systems faster but with sufficient accuracy. While many approaches involve simplified models of the underlying physics, others are model-free and make predictions based only on existing simulation data. We present a novel model-free approach in which we reformulate the simulation problem to effectively increase the size of constrained pre-computed datasets and introduce a novel neural network architecture (called a cluster network) with an inductive bias well-suited to highly nonlinear computational fluid dynamics solutions. Compared to the state-of-the-art in model-based approximations, we show that our approach is nearly as accurate, an order of magnitude faster, and easier to apply. Furthermore, we show that our method outperforms other model-free approaches

    Integrated Neural Based System for State Estimation and Confidence Limit Analysis in Water Networks

    Get PDF
    In this paper a simple recurrent neural network (NN) is used as a basis for constructing an integrated system capable of finding the state estimates with corresponding confidence limits for water distribution systems. In the first phase of calculations a neural linear equations solver is combined with a Newton-Raphson iterations to find a solution to an overdetermined set of nonlinear equations describing water networks. The mathematical model of the water system is derived using measurements and pseudomeasurements consisting certain amount of uncertainty. This uncertainty has an impact on the accuracy to which the state estimates can be calculated. The second phase of calculations, using the same NN, is carried out in order to quantify the effect of measurement uncertainty on accuracy of the derived state estimates. Rather than a single deterministic state estimate, the set of all feasible states corresponding to a given level of measurement uncertainty is calculated. The set is presented in the form of upper and lower bounds for the individual variables, and hence provides limits on the potential error of each variable. The simulations have been carried out and results are presented for a realistic 34-node water distribution network

    Stochastic rounding and reduced-precision fixed-point arithmetic for solving neural ordinary differential equations

    Get PDF
    Although double-precision floating-point arithmetic currently dominates high-performance computing, there is increasing interest in smaller and simpler arithmetic types. The main reasons are potential improvements in energy efficiency and memory footprint and bandwidth. However, simply switching to lower-precision types typically results in increased numerical errors. We investigate approaches to improving the accuracy of reduced-precision fixed-point arithmetic types, using examples in an important domain for numerical computation in neuroscience: the solution of Ordinary Differential Equations (ODEs). The Izhikevich neuron model is used to demonstrate that rounding has an important role in producing accurate spike timings from explicit ODE solution algorithms. In particular, fixed-point arithmetic with stochastic rounding consistently results in smaller errors compared to single precision floating-point and fixed-point arithmetic with round-to-nearest across a range of neuron behaviours and ODE solvers. A computationally much cheaper alternative is also investigated, inspired by the concept of dither that is a widely understood mechanism for providing resolution below the least significant bit (LSB) in digital signal processing. These results will have implications for the solution of ODEs in other subject areas, and should also be directly relevant to the huge range of practical problems that are represented by Partial Differential Equations (PDEs).Comment: Submitted to Philosophical Transactions of the Royal Society
    • …
    corecore