320 research outputs found

    Steady-state anatomical and quantitative magnetic resonance imaging of the heart using RF-frequencymodulated techniques

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the United States and Europe and generates healthcare costs of hundreds of billions of dollars annually. Conventional methods of diagnosing CVD are often invasive and carry risks for the patient. For example, the gold standard for diagnosing coronary artery disease, a major class of CVD, is x-ray coronary angiography, which has the disadvantages of being invasive, being expensive, using ionizing radiation, and having a ris k of complications. Conversely, coronary MR angiography (MRA) does not use ionizing radiation, can effectively visualize tissues without the need for exogenous contrast agents, and benefits from an adaptable temporal resolution. However, the acquisition time of cardiac MRI is far longer than the temporal scales of cardiac and respiratory motion, necessitating some method of compensating for this motion. The free-running framework is a novel development in our lab, benefitting from advances over the past three decades, that attempts to address disadvantages of previous cardiac MRI approaches: it provides fully self-gated 5D cardiac MRI with a simplified workflow, improved ease-of-use, reduced operator dependence, and automatic patient-specific motion detection. Free-running imaging increases the amount of information available to the clinician and is flexible enough to be translated to different app lications within cardiac MRI. Moreover, the self-gating of the free-running framework decoupled the acquisition from the motion compensation and thereby opened up cardiac MRI to the wider class of steady-state-based techniques utilizing balanced steady-state free precession (bSSFP) sequences, which have the benefits of practical simplicity and high signal-to-noise ratio. The focus of this thesis was therefore on the application of steady- state techniques to cardiac MRI. The first part addressed the long acquisition time of the current free-running framework and focused on anatomical coronary imaging. The published protocol of the free- running framework used an interrupted bSSFP acquisition where CHESS fat saturation modules were inserted to provide blood-fat contrast, as they suppress the signal of fat tissue surrounding the coronary arteries, and were followed by ramp-up pulses to reduce artefacts arising from the return to steady-state. This interrupted acquisition, however, suffered from an interrupted steady-state, reduced time efficiency, and higher specific absorption rate (SAR). Using novel lipid-insensitive binomial off-resonant RF excitation (LIBRE) pulses developed in our lab, the first project showed that LIBRE pulses incorporated into an uninterrupted free-running bSSFP sequence could be successfully used for 5D cardiac MRI at 1.5T. The free-running LIBRE approach reduced the acquisition time and SAR relative to the previous interrupted approach while maintaining image quality and vessel conspicuity. Furthermore, this had been the first successful use of a fat-suppressing RF excitation pulse in an uninterrupted bSSFP sequence for cardiac imaging, demonstrating that uninterrupted bSSFP can be used for cardiac MRI and addressing the problem of clinical sequence availability. Inspired by the feasibility of uninterrupted bSSFP for cardiac MRI, the second part investigated the potential of PLANET, a novel 3D multiparametric mapping technique, for free-running 5D myocardial mapping. PLANET utilizes a phase-cycled bSSFP acquisition and a direct ellipse-fitting algorithm to calculate T1 and T2 relaxation times, which suggested that it could be readily integrated into the free-running framework without interrupting the steady-state. After initially calibrating the acquisition, the possibility of accelerating the static PLANET acquisition was explored prior to applying it to the moving heart. It was shown that PLANET accuracy and precision could be maintained with two-fold acceleration with a 3D Cartesian spiral trajectory, suggesting that PLANET for myocardial mapping with the free-running 5D radial acquisition is feasible. Further work should investigate optimizing the reconstruction scheme, improving the coil sensitivity estimate, and examining the use of the radial trajectory with a view to implementing free-running 5D myocardial T1 and T2 mapping. This thesis presents two approaches utilizing RF-frequency-modulated steady-state techniques for cardiac MRI. The first approach involved the novel application of an uninterrupted bSSFP acquisition with off-resonant RF excitation for anatomical coronary imaging. The second approach investigated the use of phase-cycled bSSFP for free-running 5D myocardial T1 and T2 mapping. Both methods addressed the challenge of clinical availability of sequences in cardiac MRI, by showing that a common and simple sequence like bSSFP can be used for acquisition while the steps of motion compensation and reconstruction can be handled offline, and thus have the potential to improve adoption of cardiac MRI. -- Les maladies cardiovasculaires (MCV) reprĂ©sentent la principale cause de dĂ©cĂšs aux États-Unis et en Europe et gĂ©nĂšrent des coĂ»ts de santĂ© de plusieurs centaines de milliards de dollars par an. Les mĂ©thodes conventionnelles de diagnostic des MCV sont souvent invasives et comportent des risques pour le patient. Par exemple, la mĂ©thode de rĂ©fĂ©rence pour le diagnostic de la maladie coronarienne, une catĂ©gorie majeure de MCV, est la coronarographie par rayons X qui a comme inconvĂ©nients son caractĂšre invasif, son coĂ»t, l’utilisation de rayonnements ionisants et le risque de complications. A l’inverse, l'angiographie coronarienne par rĂ©sonance magnĂ©tique (ARM) n'utilise pas de rayonnements ionisants, permet de visualiser efficacement les tissus sans avoir recours Ă  des agents de contraste exogĂšnes et bĂ©nĂ©ficie d'une rĂ©solution temporelle ajustable. Cependant, le temps d'acquisition en IRM cardiaque est bien plus long que les Ă©chelles temporelles des mouvements cardiaques et respiratoires en jeu, ce qui rend la compensation de ces mouvements indispensable. Le cadre dit de « free -running » est un nouveau dĂ©veloppement de notre laboratoire qui bĂ©nĂ©ficie des progrĂšs rĂ©alisĂ©s au cours des trois derniĂšres dĂ©cennies et tente de remĂ©dier aux inconvĂ©nients des approches prĂ©cĂ©dentes pour l'IRM cardiaque : il fournit une IRM cardiaque en cinq dimensions (5D) complĂštement « self-gated » , c’est-Ă -dire capable de dĂ©tecter les mouvements cardiaques et respiratoires, forte d’une implĂ©mentation simplifiĂ©e, d’une plus grande facilitĂ© d'utilisation, d’une dĂ©pendance rĂ©duite vis-Ă -vis de l'opĂ©rateur et d’une dĂ©tection automatique des mouvements spĂ©cifiques du patient. L'imagerie « free- running » augmente la quantitĂ© d'informations Ă  disposition du clinicien et est suffisamment flexible pour ĂȘtre appliquĂ©e Ă  diffĂ©rents domaines de l'IRM cardiaque. De plus, le « self-gating » du cadre « free-running » a dĂ©couplĂ© l'acquisition de la compensation de mouvement et a ainsi ouvert l'IRM cardiaque Ă  la classe plus large des techniques basĂ©es sur l'Ă©tat stationnaire utilisant des sĂ©quences de prĂ©cession libre Ă©quilibrĂ©e en Ă©tat stationnaire (bSSFP), qui se distinguent par leur simplicitĂ© d’utilisation et leur rapport signal sur bruit Ă©levĂ©. Le thĂšme de cette thĂšse est donc l'application des techniques basĂ©es sur l'Ă©tat stationnaire Ă  l'IRM cardiaque. La premiĂšre partie porte sur le long temps d'acquisition de l'actuel cadre « free-running» et se concentre sur l'imagerie anatomique coronaire. Le protocole publiĂ© utilise une acquisition bSSFP interrompue oĂč des modules de saturation de graisse (CHESS) sont insĂ©rĂ©s de façon Ă  fournir un contraste sang-graisse puisqu’ils suppriment le signal du tissu graisseux entourant les artĂšres coronaires, et sont suivis par des impulsions en rampe pour rĂ©duire les artefacts rĂ©sultant du retour Ă  l'Ă©tat stable. Cette acquisition interrompue souffre cependant d'un Ă©tat d'Ă©quilibre interrompu, d'une efficacitĂ© temporelle rĂ©duite et d'un dĂ©bit d'absorption spĂ©cifique (DAS) plus Ă©levĂ©. En utilisant les nouvelles impulsions d'excitation radiofrĂ©quence (RF) binomiales hors -rĂ©sonance insensibles aux lipides (LIBRE) dĂ©veloppĂ©es dans notre laboratoi re, ce premier projet montre que les impulsions LIBRE incorporĂ©es dans une sĂ©quence bSSFP ininterrompue et « free-running » peuvent ĂȘtre utilisĂ©es avec succĂšs pour l'IRM cardiaque 5D Ă  1,5 T. L'approche « free-running LIBRE » permet de rĂ©duire le temps d'acquisition et le DAS par rapport Ă  l'approche interrompue prĂ©cĂ©dente, tout en maintenant la perceptibilitĂ© des artĂšres coronariennes. En outre, il s'agit de la premiĂšre utilisation rĂ©ussie d'une impulsion d'excitation RF supprimant la graisse dans une sĂ©quence bSSFP ininterrompue pour l'imagerie cardiaque, ce qui dĂ©montre le potentiel d’utilisation de la sĂ©quence bSSFP ininterrompue pour l'IRM cardiaque et rĂ©sout le problĂšme de la disponibilitĂ© de la sĂ©quence en clinique. InspirĂ©e par la faisabilitĂ© d’utilisation de la sĂ©quence bSSFP ininterrompue pour l'IRM cardiaque, la deuxiĂšme partie Ă©tudie le potentiel de PLANET, une nouvelle technique de cartographie 3D multiparamĂ©trique, pour la cartographie 5D du myocarde via l’imagerie « free-running ». PLANET utilise une acquisition bSSFP Ă  cycle de phase et un algorithme d'ajustement d'ellipse direct pour calculer les temps de relaxation T1 et T2, ce qui suggĂšre que cette mĂ©thode pourrait ĂȘtre facilement intĂ©grĂ©e au cadre « free - running » sans interruption de l’état d'Ă©quilibre. AprĂšs calibration de l'acquisition, nous explorons la possibilitĂ© d'accĂ©lĂ©rer l'acquisition statique de PLANET pour l'appliquer au cƓur. Nous dĂ©montrons que l'exactitude et la prĂ©cision de PLANET peuvent ĂȘtre maintenues pour une accĂ©lĂ©ration double avec une trajectoire 3D cartĂ©sienne en spirale, ce qui suggĂšre que PLANET est rĂ©alisable pour la cartographie du myocarde avec une acquisition radiale 5D « free-running ». D'autres travaux devraient porter sur l'optimisation du schĂ©ma de reconstruction, l'amĂ©lioration de l'estimation de la sensibilitĂ© de l’antenne et l'examen de l'utilisation de la trajectoire radiale en vue de la mise en Ɠuvre de la cartographie 5D « free-running » T1 et T2 du myocarde. Cette thĂšse prĂ©sente deux approches utilisant des techniques de modulation de frĂ©quence radio en Ă©tat stationnaire pour l'IRM cardiaque. La premiĂšre approche implique l'application nouvelle d'une acquisition bSSFP ininterrompue avec une excitation RF hors rĂ©sonance pour l'imagerie anatomique coronaire. La seconde approche porte sur l'utilisation d’une sĂ©quence bSSFP Ă  cycle de phase pour la cartographie 5D T1 et T2 du myocarde. Ces deux mĂ©thodes permettent de rĂ©pondre au dĂ©fi posĂ© par la disponibilitĂ© des sĂ©quences en IRM cardiaque en montrant qu'une sĂ©quence commune et simple comme la bSSFP peut ĂȘtre utilisĂ©e pour l'acquisition, tandis que les Ă©tapes de compensation du mouvement et de reconstruction peuvent ĂȘtre traitĂ©es hors ligne. Ainsi, ces mĂ©thodes ont le potentiel de favoriser l'adoption de l'IRM cardiaque

    4D Flow cardiovascular magnetic resonance consensus statement: 2023 update

    Full text link
    Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 '4D Flow CMR Consensus Statement'. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards

    4D Flow cardiovascular magnetic resonance consensus statement: 2023 update

    Get PDF
    4D Flow MRI; Hemodynamics; RecommendationsRessonĂ ncia magnĂštica de flux 4D; HemodinĂ mica; RecomanacionsResonancia magnĂ©tica de flujo 4D; HemodinĂĄmica; RecomendacionesHemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 ‘4D Flow CMR Consensus Statement’. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards.1R01HL149787-01A1 (S. Schnell, M. Markl), 1R21NS122511-01 (S. Schnell), 1R01CA233878-01 (J.Collins) J.Sotelo thanks to ANID–Millennium Science Initiative Program–ICN2021_004 and FONDECYT de iniciaciĂłn en investigaciĂłn #11200481. Dr. Oechtering receives funding from the German Research Foundation (OE 746/1-1)

    Motion-Corrected Simultaneous Cardiac PET-MR Imaging

    Get PDF

    Motion-Compensated Image Reconstruction for Magnetic Resonance (MR) Imaging and for Simultaneous Positron Emission Tomography/MR Imaging

    Get PDF
    In this work, novel algorithms for 4D (3D + respiratory) and 5D (3D + respiratory + cardiac) motion-compensated (MoCo) magnetic resonance (MR) and positron emission tomography (PET) image reconstruction were developed. The focus of all methods was set on short MR acquisition times. Therefore, respiratory and cardiac patient motion were estimated on the basis of strongly undersampled radial MR data employing joint motion estimation and MR image reconstruction. In case of simultaneous PET/MR acquisitions, motion information derived from MR was incorporated into the MoCo PET reconstruction. 4D respiratory MoCo MR image reconstructions with acquisition times of 40 s achieved an image quality comparable to standard motion handling approaches, which require one order of magnitude longer MR acquisition times. Respiratory MoCo PET images using 1 min of the MR acquisition time for motion estimation revealed improved PET image quality and quantification accuracy when compared to standard reconstruction methods. Additional compensation of cardiac motion resulted in increased image sharpness of MR and PET images in the heart region and enabled time-resolved 5D imaging allowing for reconstruction of any arbitrary combination of respiratory and cardiac motion phases. The proposed methods for MoCo image reconstruction may be integrated into clinical routine, reducing MR acquisition times for improved patient comfort and increasing the diagnostic value of MR and simultaneous PET/MR examinations of the thorax and abdomen

    Reconstruction Methods for Free-Breathing Dynamic Contrast-Enhanced MRI

    Full text link
    Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) is a valuable diagnostic tool due to the combination of anatomical and physiological information it provides. However, the sequential sampling of MRI presents an inherent tradeoff between spatial and temporal resolution. Compressed Sensing (CS) methods have been applied to undersampled MRI to reconstruct full-resolution images at sub-Nyquist sampling rates. In exchange for shorter data acquisition times, CS-MRI requires more computationally intensive iterative reconstruction methods. We present several model-based image reconstruction (MBIR) methods to improve the spatial and temporal resolution of MR images and/or the computational time for multi-coil MRI reconstruction. We propose efficient variable splitting (VS) methods for support-constrained MRI reconstruction, image reconstruction and denoising with non-circulant boundary conditions, and improved temporal regularization for breast DCE-MRI. These proposed VS algorithms decouple the system model and sparsity terms of the convex optimization problem. By leveraging matrix structures in the system model and sparsifying operator, we perform alternating minimization over a list of auxiliary variables, each of which can be performed efficiently. We demonstrate the computational benefits of our proposed VS algorithms compared to similar proposed methods. We also demonstrate convergence guarantees for two proposed methods, ADMM-tridiag and ADMM-FP-tridiag. With simulation experiments, we demonstrate lower error in spatial and temporal dimensions for these VS methods compared to other object models. We also propose a method for indirect motion compensation in 5D liver DCE-MRI. 5D MRI separates temporal changes due to contrast from anatomical changes due to respiratory motion into two distinct dimensions. This work applies a pre-computed motion model to perform motion-compensated regularization across the respiratory dimension and improve the conditioning of this highly sparse 5D reconstruction problem. We demonstrate a proof of concept using a digital phantom with contrast and respiratory changes, and we show preliminary results for motion model-informed regularization on in vivo patient data.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138498/1/mtle_1.pd
    • 

    corecore