4,911 research outputs found

    Towards trajectory anonymization: a generalization-based approach

    Get PDF
    Trajectory datasets are becoming popular due to the massive usage of GPS and locationbased services. In this paper, we address privacy issues regarding the identification of individuals in static trajectory datasets. We first adopt the notion of k-anonymity to trajectories and propose a novel generalization-based approach for anonymization of trajectories. We further show that releasing anonymized trajectories may still have some privacy leaks. Therefore we propose a randomization based reconstruction algorithm for releasing anonymized trajectory data and also present how the underlying techniques can be adapted to other anonymity standards. The experimental results on real and synthetic trajectory datasets show the effectiveness of the proposed techniques

    Privacy risks in trajectory data publishing: reconstructing private trajectories from continuous properties

    Get PDF
    Location and time information about individuals can be captured through GPS devices, GSM phones, RFID tag readers, and by other similar means. Such data can be pre-processed to obtain trajectories which are sequences of spatio-temporal data points belonging to a moving object. Recently, advanced data mining techniques have been developed for extracting patterns from moving object trajectories to enable applications such as city traffic planning, identification of evacuation routes, trend detection, and many more. However, when special care is not taken, trajectories of individuals may also pose serious privacy risks even after they are de-identified or mapped into other forms. In this paper, we show that an unknown private trajectory can be reconstructed from knowledge of its properties released for data mining, which at first glance may not seem to pose any privacy threats. In particular, we propose a technique to demonstrate how private trajectories can be re-constructed from knowledge of their distances to a bounded set of known trajectories. Experiments performed on real data sets show that the number of known samples is surprisingly smaller than the actual theoretical bounds

    Discovering private trajectories using background information

    Get PDF
    Trajectories are spatio-temporal traces of moving objects which contain valuable information to be harvested by spatio-temporal data mining techniques. Applications like city traffic planning, identification of evacuation routes, trend detection, and many more can benefit from trajectory mining. However, the trajectories of individuals often contain private and sensitive information, so anyone who possess trajectory data must take special care when disclosing this data. Removing identifiers from trajectories before the release is not effective against linkage type attacks, and rich sources of background information make it even worse. An alternative is to apply transformation techniques to map the given set of trajectories into another set where the distances are preserved. This way, the actual trajectories are not released, but the distance information can still be used for data mining techniques such as clustering. In this paper, we show that an unknown private trajectory can be reconstructed using the available background information together with the mutual distances released for data mining purposes. The background knowledge is in the form of known trajectories and extra information such as the speed limit. We provide analytical results which bound the number of the known trajectories needed to reconstruct private trajectories. Experiments performed on real trajectory data sets show that the number of known samples is surprisingly smaller than the actual theoretical bounds

    Location Privacy in Spatial Crowdsourcing

    Full text link
    Spatial crowdsourcing (SC) is a new platform that engages individuals in collecting and analyzing environmental, social and other spatiotemporal information. With SC, requesters outsource their spatiotemporal tasks to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. This chapter identifies privacy threats toward both workers and requesters during the two main phases of spatial crowdsourcing, tasking and reporting. Tasking is the process of identifying which tasks should be assigned to which workers. This process is handled by a spatial crowdsourcing server (SC-server). The latter phase is reporting, in which workers travel to the tasks' locations, complete the tasks and upload their reports to the SC-server. The challenge is to enable effective and efficient tasking as well as reporting in SC without disclosing the actual locations of workers (at least until they agree to perform a task) and the tasks themselves (at least to workers who are not assigned to those tasks). This chapter aims to provide an overview of the state-of-the-art in protecting users' location privacy in spatial crowdsourcing. We provide a comparative study of a diverse set of solutions in terms of task publishing modes (push vs. pull), problem focuses (tasking and reporting), threats (server, requester and worker), and underlying technical approaches (from pseudonymity, cloaking, and perturbation to exchange-based and encryption-based techniques). The strengths and drawbacks of the techniques are highlighted, leading to a discussion of open problems and future work

    Privacy-Preserving Trajectory Data Publishing via Differential Privacy

    Get PDF
    Over the past decade, the collection of data by individuals, businesses and government agencies has increased tremendously. Due to the widespread of mobile computing and the advances in location-acquisition techniques, an immense amount of data concerning the mobility of moving objects have been generated. The movement data of an object (e.g. individual) might include specific information about the locations it visited, the time those locations were visited, or both. While it is beneficial to share data for the purpose of mining and analysis, data sharing might risk the privacy of the individuals involved in the data. Privacy-Preserving Data Publishing (PPDP) provides techniques that utilize several privacy models for the purpose of publishing useful information while preserving data privacy. The objective of this thesis is to answer the following question: How can a data owner publish trajectory data while simultaneously safeguarding the privacy of the data and maintaining its usefulness? We propose an algorithm for anonymizing and publishing trajectory data that ensures the output is differentially private while maintaining high utility and scalability. Our solution comprises a twofold approach. First, we generalize trajectories by generalizing and then partitioning the timestamps at each location in a differentially private manner. Next, we add noise to the real count of the generalized trajectories according to the given privacy budget to enforce differential privacy. As a result, our approach achieves an overall epsilon-differential privacy on the output trajectory data. We perform experimental evaluation on real-life data, and demonstrate that our proposed approach can effectively answer count and range queries, as well as mining frequent sequential patterns. We also show that our algorithm is efficient w.r.t. privacy budget and number of partitions, and also scalable with increasing data size

    Privacy and trustworthiness management in moving object environments

    Get PDF
    The use of location-based services (LBS) (e.g., Intel\u27s Thing Finder) is expanding. Besides the traditional centralized location-based services, distributed ones are also emerging due to the development of Vehicular Ad-hoc Networks (VANETs), a dynamic network which allows vehicles to communicate with one another. Due to the nature of the need of tracking users\u27 locations, LBS have raised increasing concerns on users\u27 location privacy. Although many research has been carried out for users to submit their locations anonymously, the collected anonymous location data may still be mapped to individuals when the adversary has related background knowledge. To improve location privacy, in this dissertation, the problem of anonymizing the collected location datasets is addressed so that they can be published for public use without violating any privacy concerns. Specifically, a privacy-preserving trajectory publishing algorithm is proposed that preserves high data utility rate. Moreover, the scalability issue is tackled in the case the location datasets grows gigantically due to continuous data collection as well as increase of LBS users by developing a distributed version of our trajectory publishing algorithm which leveraging the MapReduce technique. As a consequence of users being anonymous, it becomes more challenging to evaluate the trustworthiness of messages disseminated by anonymous users. Existing research efforts are mainly focused on privacy-preserving authentication of users which helps in tracing malicious vehicles only after the damage is done. However, it is still not sufficient to prevent malicious behavior from happening in the case where attackers do not care whether they are caught later on. Therefore, it would be more effective to also evaluate the content of the message. In this dissertation, a novel information-oriented trustworthiness evaluation is presented which enables each individual user to evaluate the message content and make informed decisions --Abstract, page iii
    corecore