55 research outputs found

    How to Achieve the Capacity of Asymmetric Channels

    Full text link
    We survey coding techniques that enable reliable transmission at rates that approach the capacity of an arbitrary discrete memoryless channel. In particular, we take the point of view of modern coding theory and discuss how recent advances in coding for symmetric channels help provide more efficient solutions for the asymmetric case. We consider, in more detail, three basic coding paradigms. The first one is Gallager's scheme that consists of concatenating a linear code with a non-linear mapping so that the input distribution can be appropriately shaped. We explicitly show that both polar codes and spatially coupled codes can be employed in this scenario. Furthermore, we derive a scaling law between the gap to capacity, the cardinality of the input and output alphabets, and the required size of the mapper. The second one is an integrated scheme in which the code is used both for source coding, in order to create codewords distributed according to the capacity-achieving input distribution, and for channel coding, in order to provide error protection. Such a technique has been recently introduced by Honda and Yamamoto in the context of polar codes, and we show how to apply it also to the design of sparse graph codes. The third paradigm is based on an idea of B\"ocherer and Mathar, and separates the two tasks of source coding and channel coding by a chaining construction that binds together several codewords. We present conditions for the source code and the channel code, and we describe how to combine any source code with any channel code that fulfill those conditions, in order to provide capacity-achieving schemes for asymmetric channels. In particular, we show that polar codes, spatially coupled codes, and homophonic codes are suitable as basic building blocks of the proposed coding strategy.Comment: 32 pages, 4 figures, presented in part at Allerton'14 and published in IEEE Trans. Inform. Theor

    Threshold Computation for Spatially Coupled Turbo-Like Codes on the AWGN Channel

    Get PDF
    In this paper, we perform a belief propagation (BP) decoding threshold analysis of spatially coupled (SC) turbo-like codes (TCs) (SC-TCs) on the additive white Gaussian noise (AWGN) channel. We review Monte-Carlo density evolution (MC-DE) and efficient prediction methods, which determine the BP thresholds of SC-TCs over the AWGN channel. We demonstrate that instead of performing time-consuming MC-DE computations, the BP threshold of SC-TCs over the AWGN channel can be predicted very efficiently from their binary erasure channel (BEC) thresholds. From threshold results, we conjecture that the similarity of MC-DE and predicted thresholds is related to the threshold saturation capability as well as capacity-approaching maximum a posteriori (MAP) performance of an SC-TC ensemble

    Design and Analysis of Graph-based Codes Using Algebraic Lifts and Decoding Networks

    Get PDF
    Error-correcting codes seek to address the problem of transmitting information efficiently and reliably across noisy channels. Among the most competitive codes developed in the last 70 years are low-density parity-check (LDPC) codes, a class of codes whose structure may be represented by sparse bipartite graphs. In addition to having the potential to be capacity-approaching, LDPC codes offer the significant practical advantage of low-complexity graph-based decoding algorithms. Graphical substructures called trapping sets, absorbing sets, and stopping sets characterize failure of these algorithms at high signal-to-noise ratios. This dissertation focuses on code design for and analysis of iterative graph-based message-passing decoders. The main contributions of this work include the following: the unification of spatially-coupled LDPC (SC-LDPC) code constructions under a single algebraic graph lift framework and the analysis of SC-LDPC code construction techniques from the perspective of removing harmful trapping and absorbing sets; analysis of the stopping and absorbing set parameters of hypergraph codes and finite geometry LDPC (FG-LDPC) codes; the introduction of multidimensional decoding networks that encode the behavior of hard-decision message-passing decoders; and the presentation of a novel Iteration Search Algorithm, a list decoder designed to improve the performance of hard-decision decoders. Adviser: Christine A. Kelle

    SIGNAL PROCESSING TECHNIQUES AND APPLICATIONS

    Get PDF
    As the technologies scaling down, more transistors can be fabricated into the same area, which enables the integration of many components into the same substrate, referred to as system-on-chip (SoC). The components on SoC are connected by on-chip global interconnects. It has been shown in the recent International Technology Roadmap of Semiconductors (ITRS) that when scaling down, gate delay decreases, but global interconnect delay increases due to crosstalk. The interconnect delay has become a bottleneck of the overall system performance. Many techniques have been proposed to address crosstalk, such as shielding, buffer insertion, and crosstalk avoidance codes (CACs). The CAC is a promising technique due to its good crosstalk reduction, less power consumption and lower area. In this dissertation, I will present analytical delay models for on-chip interconnects with improved accuracy. This enables us to have a more accurate control of delays for transition patterns and lead to a more efficient CAC, whose worst-case delay is 30-40% smaller than the best of previously proposed CACs. As the clock frequency approaches multi-gigahertz, the parasitic inductance of on-chip interconnects has become significant and its detrimental effects, including increased delay, voltage overshoots and undershoots, and increased crosstalk noise, cannot be ignored. We introduce new CACs to address both capacitive and inductive couplings simultaneously.Quantum computers are more powerful in solving some NP problems than the classical computers. However, quantum computers suffer greatly from unwanted interactions with environment. Quantum error correction codes (QECCs) are needed to protect quantum information against noise and decoherence. Given their good error-correcting performance, it is desirable to adapt existing iterative decoding algorithms of LDPC codes to obtain LDPC-based QECCs. Several QECCs based on nonbinary LDPC codes have been proposed with a much better error-correcting performance than existing quantum codes over a qubit channel. In this dissertation, I will present stabilizer codes based on nonbinary QC-LDPC codes for qubit channels. The results will confirm the observation that QECCs based on nonbinary LDPC codes appear to achieve better performance than QECCs based on binary LDPC codes.As the technologies scaling down further to nanoscale, CMOS devices suffer greatly from the quantum mechanical effects. Some emerging nano devices, such as resonant tunneling diodes (RTDs), quantum cellular automata (QCA), and single electron transistors (SETs), have no such issues and are promising candidates to replace the traditional CMOS devices. Threshold gate, which can implement complex Boolean functions within a single gate, can be easily realized with these devices. Several applications dealing with real-valued signals have already been realized using nanotechnology based threshold gates. Unfortunately, the applications using finite fields, such as error correcting coding and cryptography, have not been realized using nanotechnology. The main obstacle is that they require a great number of exclusive-ORs (XORs), which cannot be realized in a single threshold gate. Besides, the fan-in of a threshold gate in RTD nanotechnology needs to be bounded for both reliability and performance purpose. In this dissertation, I will present a majority-class threshold architecture of XORs with bounded fan-in, and compare it with a Boolean-class architecture. I will show an application of the proposed XORs for the finite field multiplications. The analysis results will show that the majority class outperforms the Boolean class architectures in terms of hardware complexity and latency. I will also introduce a sort-and-search algorithm, which can be used for implementations of any symmetric functions. Since XOR is a special symmetric function, it can be implemented via the sort-and-search algorithm. To leverage the power of multi-input threshold functions, I generalize the previously proposed sort-and-search algorithm from a fan-in of two to arbitrary fan-ins, and propose an architecture of multi-input XORs with bounded fan-ins

    Spatially Coupled Turbo-Like Codes

    Get PDF
    The focus of this thesis is on proposing and analyzing a powerful class of codes on graphs---with trellis constraints---that can simultaneously approach capacity and achieve very low error floor. In particular, we propose the concept of spatial coupling for turbo-like code (SC-TC) ensembles and investigate the impact of coupling on the performance of these codes. The main elements of this study can be summarized by the following four major topics. First, we considered the spatial coupling of parallel concatenated codes (PCCs), serially concatenated codes (SCCs), and hybrid concatenated codes (HCCs).We also proposed two extensions of braided convolutional codes (BCCs) to higher coupling memories. Second, we investigated the impact of coupling on the asymptotic behavior of the proposed ensembles in term of the decoding thresholds. For that, we derived the exact density evolution (DE) equations of the proposed SC-TC ensembles over the binary erasure channel. Using the DE equations, we found the thresholds of the coupled and uncoupled ensembles under belief propagation (BP) decoding for a wide range of rates. We also computed the maximum a-posteriori (MAP) thresholds of the underlying uncoupled ensembles. Our numerical results confirm that TCs have excellent MAP thresholds, and for a large enough coupling memory, the BP threshold of an SC-TC ensemble improves to the MAP threshold of the underlying TC ensemble. This phenomenon is called threshold saturation and we proved its occurrence for SC-TCs by use of a proof technique based on the potential function of the ensembles.Third, we investigated and discussed the performance of SC-TCs in the finite length regime. We proved that under certain conditions the minimum distance of an SC-TCs is either larger or equal to that of its underlying uncoupled ensemble. Based on this fact, we performed a weight enumerator (WE) analysis for the underlying uncoupled ensembles to investigate the error floor performance of the SC-TC ensembles. We computed bounds on the error rate performance and minimum distance of the TC ensembles. These bounds indicate very low error floor for SCC, HCC, and BCC ensembles, and show that for HCC, and BCC ensembles, the minimum distance grows linearly with the input block length.The results from the DE and WE analysis demonstrate that the performance of TCs benefits from spatial coupling in both waterfall and error floor regions. While uncoupled TC ensembles with close-to-capacity performance exhibit a high error floor, our results show that SC-TCs can simultaneously approach capacity and achieve very low error floor.Fourth, we proposed a unified ensemble of TCs that includes all the considered TC classes. We showed that for each of the original classes of TCs, it is possible to find an equivalent ensemble by proper selection of the design parameters in the unified ensemble. This unified ensemble not only helps us to understand the connections and trade-offs between the TC ensembles but also can be considered as a bridge between TCs and generalized low-density parity check codes
    • …
    corecore