74,815 research outputs found

    Statistical Yield Analysis and Design for Nanometer VLSI

    Get PDF
    Process variability is the pivotal factor impacting the design of high yield integrated circuits and systems in deep sub-micron CMOS technologies. The electrical and physical properties of transistors and interconnects, the building blocks of integrated circuits, are prone to significant variations that directly impact the performance and power consumption of the fabricated devices, severely impacting the manufacturing yield. However, the large number of the transistors on a single chip adds even more challenges for the analysis of the variation effects, a critical task in diagnosing the cause of failure and designing for yield. Reliable and efficient statistical analysis methodologies in various design phases are key to predict the yield before entering such an expensive fabrication process. In this thesis, the impacts of process variations are examined at three different levels: device, circuit, and micro-architecture. The variation models are provided for each level of abstraction, and new methodologies are proposed for efficient statistical analysis and design under variation. At the circuit level, the variability analysis of three crucial sub-blocks of today's system-on-chips, namely, digital circuits, memory cells, and analog blocks, are targeted. The accurate and efficient yield analysis of circuits is recognized as an extremely challenging task within the electronic design automation community. The large scale of the digital circuits, the extremely high yield requirement for memory cells, and the time-consuming analog circuit simulation are major concerns in the development of any statistical analysis technique. In this thesis, several sampling-based methods have been proposed for these three types of circuits to significantly improve the run-time of the traditional Monte Carlo method, without compromising accuracy. The proposed sampling-based yield analysis methods benefit from the very appealing feature of the MC method, that is, the capability to consider any complex circuit model. However, through the use and engineering of advanced variance reduction and sampling methods, ultra-fast yield estimation solutions are provided for different types of VLSI circuits. Such methods include control variate, importance sampling, correlation-controlled Latin Hypercube Sampling, and Quasi Monte Carlo. At the device level, a methodology is proposed which introduces a variation-aware design perspective for designing MOS devices in aggressively scaled geometries. The method introduces a yield measure at the device level which targets the saturation and leakage currents of an MOS transistor. A statistical method is developed to optimize the advanced doping profiles and geometry features of a device for achieving a maximum device-level yield. Finally, a statistical thermal analysis framework is proposed. It accounts for the process and thermal variations simultaneously, at the micro-architectural level. The analyzer is developed, based on the fact that the process variations lead to uncertain leakage power sources, so that the thermal profile, itself, would have a probabilistic nature. Therefore, by a co-process-thermal-leakage analysis, a more reliable full-chip statistical leakage power yield is calculated

    Complexity, parallel computation and statistical physics

    Full text link
    The intuition that a long history is required for the emergence of complexity in natural systems is formalized using the notion of depth. The depth of a system is defined in terms of the number of parallel computational steps needed to simulate it. Depth provides an objective, irreducible measure of history applicable to systems of the kind studied in statistical physics. It is argued that physical complexity cannot occur in the absence of substantial depth and that depth is a useful proxy for physical complexity. The ideas are illustrated for a variety of systems in statistical physics.Comment: 21 pages, 7 figure

    Robust and Efficient Uncertainty Quantification and Validation of RFIC Isolation

    Get PDF
    Modern communication and identification products impose demanding constraints on reliability of components. Due to this statistical constraints more and more enter optimization formulations of electronic products. Yield constraints often require efficient sampling techniques to obtain uncertainty quantification also at the tails of the distributions. These sampling techniques should outperform standard Monte Carlo techniques, since these latter ones are normally not efficient enough to deal with tail probabilities. One such a technique, Importance Sampling, has successfully been applied to optimize Static Random Access Memories (SRAMs) while guaranteeing very small failure probabilities, even going beyond 6-sigma variations of parameters involved. Apart from this, emerging uncertainty quantifications techniques offer expansions of the solution that serve as a response surface facility when doing statistics and optimization. To efficiently derive the coefficients in the expansions one either has to solve a large number of problems or a huge combined problem. Here parameterized Model Order Reduction (MOR) techniques can be used to reduce the work load. To also reduce the amount of parameters we identify those that only affect the variance in a minor way. These parameters can simply be set to a fixed value. The remaining parameters can be viewed as dominant. Preservation of the variation also allows to make statements about the approximation accuracy obtained by the parameter-reduced problem. This is illustrated on an RLC circuit. Additionally, the MOR technique used should not affect the variance significantly. Finally we consider a methodology for reliable RFIC isolation using floor-plan modeling and isolation grounding. Simulations show good comparison with measurements

    Indirect test of M-S circuits using multiple specification band guarding

    Get PDF
    Testing analog and mixed-signal circuits is a costly task due to the required test time targets and high end technical resources. Indirect testing methods partially address these issues providing an efficient solution using easy to measure CUT information that correlates with circuit performances. In this work, a multiple specification band guarding technique is proposed as a method to achieve a test target of misclassified circuits. The acceptance/rejection test regions are encoded using octrees in the measurement space, where the band guarding factors precisely tune the test decision boundary according to the required test yield targets. The generated octree data structure serves to cluster the forthcoming circuits in the production testing phase by solely relying on indirect measurements. The combined use of octree based encoding and multiple specification band guarding makes the testing procedure fast, efficient and highly tunable. The proposed band guarding methodology has been applied to test a band-pass Butterworth filter under parametric variations. Promising simulation results are reported showing remarkable improvements when the multiple specification band guarding criterion is used.Peer ReviewedPostprint (author's final draft
    corecore