942 research outputs found

    The Flying Monkey: a Mesoscale Robot that can Run, Fly, and Grasp

    Get PDF
    The agility and ease of control make a quadrotor aircraft an attractive platform for studying swarm behavior, modeling, and control. The energetics of sustained flight for small aircraft, however, limit typical applications to only a few minutes. Adding payloads – and the mechanisms used to manipulate them – reduces this flight time even further. In this paper we present the flying monkey, a novel robot platform having three main capabilities: walking, grasping, and flight. This new robotic platform merges one of the world’s smallest quadrotor aircraft with a lightweight, single-degree-of-freedom walking mechanism and an SMA-actuated gripper to enable all three functions in a 30 g package. The main goal and key contribution of this paper is to design and prototype the flying monkey that has increased mission life and capabilities through the combination of the functionalities of legged and aerial roots.National Science Foundation (U.S.) (IIS-1138847)National Science Foundation (U.S.) (EFRI-124038)National Science Foundation (U.S.) (CCF-1138967)United States. Army Research Laboratory (W911NF-08-2-0004)Wyss Institute for Biologically Inspired Engineerin

    Electroadhesion Technologies For Robotics:A Comprehensive Review

    Get PDF

    Active membranes:3D printing of elastic fibre patterns on pre-stretched textiles

    Get PDF
    There has been a steady growth, over several decades, in the deployment of fabrics in architectural applications; both in terms of quantity and variety of application. More recently 3D printing and additive manufacturing have added to the palette of technologies that designers in architecture and related disciplines can call upon. Here we report on research that brings those two technologies together - the development of active membrane elements and structures. We show how these active membranes have been achieved by laminating 3D printed elasto-plastic fibres onto pre-stretched textile membranes. We report on a set of experiments involving one-, two- and multi-directional geometric arrangements that take TPU 95 and Polypropylene filaments and apply them to lycra textile sheets, to form active composite panels. The process involves a parametrised design, actualized through a particular fabrication process. Our findings document the investigation into mapping between the initial two-dimensional geometries and their resulting three-dimensional doubly-curved forms, as well as accomplishments and products of the resulting, partly serendipitous, design process

    Femtosecond laser fabricated nitinol living hinges for millimeter-sized robots

    Full text link
    Nitinol is a smart material that can be used as an actuator, a sensor, or a structural element, and has the potential to significantly enhance the capabilities of microrobots. Femtosecond laser technology can be used to process nitinol while avoiding heat-affected zones (HAZ), thus retaining superelastic properties. In this work, we manufacture living hinges of arbitrary cross-sections from nitinol using a femtosecond laser micromachining process. We first determined the laser cutting parameters, 4.1 Jcm^-2 fluence with 5 passes for 5 um ablation, by varying laser power level and number of passes. Next, we modeled the hinges using an analytical model as well as creating an Abaqus finite element method, and showed the accuracy of the models by comparing them to the torque produced by eight different hinges, four with a rectangular cross-section and four with an arc cross-section. Finally, we manufactured three prototype miniature devices to illustrate the usefulness of these nitinol hinges: a sample spherical 5-bar mechanism, a sarrus linkage, and a piezoelectric actuated robotic wing mechanism.Comment: 6 pages, 6 figures, submitted to IEEE RA-

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Damage Arresting Composites for Shaped Vehicles - Phase II Final Report

    Get PDF
    This report describes the development of a novel structural concept, Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), that addresses the demanding fuselage loading requirements for the Hybrid Wing or Blended Wing Body (BWB) airplane configuration. In addition to the analytical studies, a three specimen test program was also completed to assess the concept under axial tension loading, axial compression loading, and internal pressure loading
    • …
    corecore