272,987 research outputs found

    Hierarchical linear support vector machine

    Full text link
    This is the author’s version of a work that was accepted for publication in Pattern Recognition. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Pattern Recognition, Vol. 45, Iss. 12, (2012) DOI: 10.1016/j.patcog.2012.06.002The increasing size and dimensionality of real-world datasets make it necessary to design efficient algorithms not only in the training process but also in the prediction phase. In applications such as credit card fraud detection, the classifier needs to predict an event in 10 ms at most. In these environments the speed of the prediction constraints heavily outweighs the training costs. We propose a new classification method, called a Hierarchical Linear Support Vector Machine (H-LSVM), based on the construction of an oblique decision tree in which the node split is obtained as a Linear Support Vector Machine. Although other methods have been proposed to break the data space down in subregions to speed up Support Vector Machines, the H-LSVM algorithm represents a very simple and efficient model in training but mainly in prediction for large-scale datasets. Only a few hyperplanes need to be evaluated in the prediction step, no kernel computation is required and the tree structure makes parallelization possible. In experiments with medium and large datasets, the H-LSVM reduces the prediction cost considerably while achieving classification results closer to the non-linear SVM than that of the linear case.The authors would like to thank the anonymous reviewers for their comments that help improve the manuscript. I.R.-L. is supported by an FPU Grant from Universidad Autónoma de Madrid, and partially supported by the Universidad Autónoma de Madrid-IIC Chair and TIN2010-21575-C02-01. R.H. acknowledges partial support by ONRN00014-07-1-0741, USARIEM-W81XWH-10-C-0040 (ELINTRIX) and JPL-2012-1455933

    HVSTO: Efficient Privacy Preserving Hybrid Storage in Cloud Data Center

    Full text link
    In cloud data center, shared storage with good management is a main structure used for the storage of virtual machines (VM). In this paper, we proposed Hybrid VM storage (HVSTO), a privacy preserving shared storage system designed for the virtual machine storage in large-scale cloud data center. Unlike traditional shared storage, HVSTO adopts a distributed structure to preserve privacy of virtual machines, which are a threat in traditional centralized structure. To improve the performance of I/O latency in this distributed structure, we use a hybrid system to combine solid state disk and distributed storage. From the evaluation of our demonstration system, HVSTO provides a scalable and sufficient throughput for the platform as a service infrastructure.Comment: 7 pages, 8 figures, in proceeding of The Second International Workshop on Security and Privacy in Big Data (BigSecurity 2014

    A distributed file service based on optimistic concurrency control

    Get PDF
    The design of a layered file service for the Amoeba Distributed System is discussed, on top of which various applications can easily be intplemented. The bottom layer is formed by the Amoeba Block Services, responsible for implementing stable storage and repficated, highly available disk blocks. The next layer is formed by the Amoeba File Service which provides version management and concurrency control for tree-structured files. On top of this layer, the appficafions, ranging from databases to source code control systems, determine the structure of the file trees and provide an interface to the users

    Learning loopy graphical models with latent variables: Efficient methods and guarantees

    Get PDF
    The problem of structure estimation in graphical models with latent variables is considered. We characterize conditions for tractable graph estimation and develop efficient methods with provable guarantees. We consider models where the underlying Markov graph is locally tree-like, and the model is in the regime of correlation decay. For the special case of the Ising model, the number of samples nn required for structural consistency of our method scales as n=Ω(θminδη(η+1)2logp)n=\Omega(\theta_{\min}^{-\delta\eta(\eta+1)-2}\log p), where p is the number of variables, θmin\theta_{\min} is the minimum edge potential, δ\delta is the depth (i.e., distance from a hidden node to the nearest observed nodes), and η\eta is a parameter which depends on the bounds on node and edge potentials in the Ising model. Necessary conditions for structural consistency under any algorithm are derived and our method nearly matches the lower bound on sample requirements. Further, the proposed method is practical to implement and provides flexibility to control the number of latent variables and the cycle lengths in the output graph.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1070 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology

    Get PDF
    This work deals with the numerical solution of the monodomain and bidomain models of electrical activity of myocardial tissue. The bidomain model is a system consisting of a possibly degenerate parabolic PDE coupled with an elliptic PDE for the transmembrane and extracellular potentials, respectively. This system of two scalar PDEs is supplemented by a time-dependent ODE modeling the evolution of the so-called gating variable. In the simpler sub-case of the monodomain model, the elliptic PDE reduces to an algebraic equation. Two simple models for the membrane and ionic currents are considered, the Mitchell-Schaeffer model and the simpler FitzHugh-Nagumo model. Since typical solutions of the bidomain and monodomain models exhibit wavefronts with steep gradients, we propose a finite volume scheme enriched by a fully adaptive multiresolution method, whose basic purpose is to concentrate computational effort on zones of strong variation of the solution. Time adaptivity is achieved by two alternative devices, namely locally varying time stepping and a Runge-Kutta-Fehlberg-type adaptive time integration. A series of numerical examples demonstrates thatthese methods are efficient and sufficiently accurate to simulate the electrical activity in myocardial tissue with affordable effort. In addition, an optimalthreshold for discarding non-significant information in the multiresolution representation of the solution is derived, and the numerical efficiency and accuracy of the method is measured in terms of CPU time speed-up, memory compression, and errors in different norms.Comment: 25 pages, 41 figure
    corecore