91 research outputs found

    Context models of lines and contours

    Get PDF

    AI-Enabled Contextual Representations for Image-based Integration in Health and Safety

    Get PDF
    Recent advancements in the area of Artificial Intelligence (AI) have made it the field of choice for automatically processing and summarizing information in big-data domains such as high-resolution images. This approach, however, is not a one-size-fits-all solution, and must be tailored to each application. Furthermore, each application comes with its own unique set of challenges including technical variations, validation of AI solutions, and contextual information. These challenges are addressed in three human-health and safety related applications: (i) an early warning system of slope failures in open-pit mining operations; (ii) the modeling and characterization of 3D cell culture models imaged with confocal microscopy; and (iii) precision medicine of biomarker discovery from patients with glioblastoma multiforme through digital pathology. The methodologies and results in each of these domains show how tailor-made AI solutions can be used for automatically extracting and summarizing pertinent information from big-data applications for enhanced decision making

    Anisotropic osmosis filtering for shadow removal in images

    Get PDF
    We present an anisotropic extension of the isotropic osmosis model that has been introduced by Weickert et al.~(Weickert, 2013) for visual computing applications, and we adapt it specifically to shadow removal applications. We show that in the integrable setting, linear anisotropic osmosis minimises an energy that involves a suitable quadratic form which models local directional structures. In our shadow removal applications we estimate the local structure via a modified tensor voting approach (Moreno, 2012) and use this information within an anisotropic diffusion inpainting that resembles edge-enhancing anisotropic diffusion inpainting (Weickert, 2006, Gali\'c, 2008). Our numerical scheme combines the nonnegativity preserving stencil of Fehrenbach and Mirebeau (Fehrenbach, 2014) with an exact time stepping based on highly accurate polynomial approximations of the matrix exponential. The resulting anisotropic model is tested on several synthetic and natural images corrupted by constant shadows. We show that it outperforms isotropic osmosis, since it does not suffer from blurring artefacts at the shadow boundaries

    PDE-based Group Equivariant Convolutional Neural Networks

    Full text link
    We present a PDE-based framework that generalizes Group equivariant Convolutional Neural Networks (G-CNNs). In this framework, a network layer is seen as a set of PDE-solvers where geometrically meaningful PDE-coefficients become the layer's trainable weights. Formulating our PDEs on homogeneous spaces allows these networks to be designed with built-in symmetries such as rotation in addition to the standard translation equivariance of CNNs. Having all the desired symmetries included in the design obviates the need to include them by means of costly techniques such as data augmentation. We will discuss our PDE-based G-CNNs (PDE-G-CNNs) in a general homogeneous space setting while also going into the specifics of our primary case of interest: roto-translation equivariance. We solve the PDE of interest by a combination of linear group convolutions and non-linear morphological group convolutions with analytic kernel approximations that we underpin with formal theorems. Our kernel approximations allow for fast GPU-implementation of the PDE-solvers, we release our implementation with this article in the form of the LieTorch extension to PyTorch, available at https://gitlab.com/bsmetsjr/lietorch . Just like for linear convolution a morphological convolution is specified by a kernel that we train in our PDE-G-CNNs. In PDE-G-CNNs we do not use non-linearities such as max/min-pooling and ReLUs as they are already subsumed by morphological convolutions. We present a set of experiments to demonstrate the strength of the proposed PDE-G-CNNs in increasing the performance of deep learning based imaging applications with far fewer parameters than traditional CNNs.Comment: 27 pages, 18 figures. v2 changes: - mentioned KerCNNs - added section Generalization of G-CNNs - clarification that the experiments utilized automatic differentiation and SGD. v3 changes: - streamlined theoretical framework - formulation and proof Thm.1 & 2 - expanded experiments. v4 changes: typos in Prop.5 and (20) v5/6 changes: minor revisio

    Three-Dimensional Object Registration Using Wavelet Features

    Get PDF
    Recent developments in shape-based modeling and data acquisition have brought three-dimensional models to the forefront of computer graphics and visualization research. New data acquisition methods are producing large numbers of models in a variety of fields. Three-dimensional registration (alignment) is key to the useful application of such models in areas from automated surface inspection to cancer detection and surgery. The algorithms developed in this research accomplish automatic registration of three-dimensional voxelized models. We employ features in a wavelet transform domain to accomplish registration. The features are extracted in a multi-resolutional format, thus delineating features at various scales for robust and rapid matching. Registration is achieved by using a voting scheme to select peaks in sets of rotation quaternions, then separately identifying translation. The method is robust to occlusion, clutter, and noise. The efficacy of the algorithm is demonstrated through examples from solid modeling and medical imaging applications
    • …
    corecore