54 research outputs found

    Exploitation of quasi-orthogonal space time block codes in virtual antenna arrays: part I - theoretical capacity and throughput gains

    Get PDF
    A full-rate and full-diversity closed-loop quasi-orthogonal space time block coding scheme pioneered by Toker, Lambotharan and Chambers is proposed for application in virtual antenna arrays. The theoretical capacity and throughput gains are evaluated as a function of signal-to-noise ratio. It is shown that the scheme has particular benefits in both ergodic and non-ergodic channel environments, and outperforms virtual antenna arrays based solely upon conventional orthogonal space time block codes

    Distributed Quasi-Orthogonal Space-Time coding in wireless cooperative relay networks

    Get PDF
    Cooperative diversity provides a new paradigm in robust wireless re- lay networks that leverages Space-Time (ST) processing techniques to combat the effects of fading. Distributing the encoding over multiple relays that potentially observe uncorrelated channels to a destination terminal has demonstrated promising results in extending range, data- rates and transmit power utilization. Specifically, Space Time Block Codes (STBCs) based on orthogonal designs have proven extremely popular at exploiting spatial diversity through simple distributed pro- cessing without channel knowledge at the relaying terminals. This thesis aims at extending further the extensive design and analysis in relay networks based on orthogonal designs in the context of Quasi- Orthogonal Space Time Block Codes (QOSTBCs). The characterization of Quasi-Orthogonal MIMO channels for cooper- ative networks is performed under Ergodic and Non-Ergodic channel conditions. Specific to cooperative diversity, the sub-channels are as- sumed to observe different shadowing conditions as opposed to the traditional co-located communication system. Under Ergodic chan- nel assumptions novel closed-form solutions for cooperative channel capacity under the constraint of distributed-QOSTBC processing are presented. This analysis is extended to yield closed-form approx- imate expressions and their utility is verified through simulations. The effective use of partial feedback to orthogonalize the QOSTBC is examined and significant gains under specific channel conditions are demonstrated. Distributed systems cooperating over the network introduce chal- lenges in synchronization. Without extensive network management it is difficult to synchronize all the nodes participating in the relaying between source and destination terminals. Based on QOSTBC tech- niques simple encoding strategies are introduced that provide compa- rable throughput to schemes under synchronous conditions with neg- ligible overhead in processing throughout the protocol. Both mutli- carrier and single-carrier schemes are developed to enable the flexi- bility to limit Peak-to-Average-Power-Ratio (PAPR) and reduce the Radio Frequency (RF) requirements of the relaying terminals. The insights gained in asynchronous design in flat-fading cooperative channels are then extended to broadband networks over frequency- selective channels where the novel application of QOSTBCs are used in distributed-Space-Time-Frequency (STF) coding. Specifically, cod- ing schemes are presented that extract both spatial and mutli-path diversity offered by the cooperative Multiple-Input Multiple-Output (MIMO) channel. To provide maximum flexibility the proposed schemes are adapted to facilitate both Decode-and-Forward (DF) and Amplify- and-Forward (AF) relaying. In-depth Pairwise-Error-Probability (PEP) analysis provides distinct design specifications which tailor the distributed- STF code to maximize the diversity and coding gain offered under the DF and AF protocols. Numerical simulation are used extensively to confirm the validity of the proposed cooperative schemes. The analytical and numerical re- sults demonstrate the effective use of QOSTBC over orthogonal tech- niques in a wide range of channel conditions

    Otimização do fronthaul ótico para redes de acesso de rádio (baseadas) em computação em nuvem (CC-RANs)

    Get PDF
    Doutoramento conjunto (MAP-Tele) em Engenharia Eletrotécnica/TelecomunicaçõesA proliferação de diversos tipos de dispositivos moveis, aplicações e serviços com grande necessidade de largura de banda têm contribuído para o aumento de ligações de banda larga e ao aumento do volume de trafego das redes de telecomunicações moveis. Este aumento exponencial tem posto uma enorme pressão nos mobile operadores de redes móveis (MNOs). Um dos aspetos principais deste recente desenvolvimento, é a necessidade que as redes têm de oferecer baixa complexidade nas ligações, como também baixo consumo energético, muito baixa latência e ao mesmo tempo uma grande capacidade por baixo usto. De maneira a resolver estas questões, os MNOs têm focado a sua atenção na redes de acesso por rádio em nuvem (C-RAN) principalmente devido aos seus benefícios em termos de otimização de performance e relação qualidade preço. O standard para a distribuição de sinais sem fios por um fronthaul C-RAN é o common public radio interface (CPRI). No entanto, ligações óticas baseadas em interfaces CPRI necessitam de uma grande largura de banda. Estes requerimentos podem também ser atingidos com uma implementação em ligação free space optical (FSO) que é um sistema ótico que usa comunicação sem fios. O FSO tem sido uma alternativa muito apelativa aos sistemas de comunicação rádio (RF) pois combinam a flexibilidade e mobilidade das redes RF ao mesmo tempo que permitem a elevada largura de banda permitida pelo sistema ótico. No entanto, as ligações FSO são suscetíveis a alterações atmosféricas que podem prejudicar o desempenho do sistema de comunicação. Estas limitações têm evitado o FSO de ser tornar uma excelente solução para o fronthaul. Uma caracterização precisa do canal e tecnologias mais avançadas são então necessárias para uma implementação pratica de ligações FSO. Nesta tese, vamos estudar uma implementação eficiente para fronthaul baseada em tecnologia á rádio-sobre-FSO (RoFSO). Propomos expressões em forma fechada para mitigação das perdas de propagação e para a estimação da capacidade do canal de maneira a aliviar a complexidade do sistema de comunicação. Simulações numéricas são também apresentadas para formatos de modulação adaptativas. São também considerados esquemas como um sistema hibrido RF/FSO e tecnologias de transmissão apoiadas por retransmissores que ajudam a alivar os requerimentos impostos por um backhaul/fronthaul de C-RAN. Os modelos propostos não só reduzem o esforço computacional, como também têm outros méritos, tais como, uma elevada precisão na estimação do canal e desempenho, baixo requisitos na capacidade de memória e uma rápida e estável operação comparativamente com o estado da arte em sistemas analíticos (PON)-FSO. Este sistema é implementado num recetor em tempo real que é emulado através de uma field-programmable gate array (FPGA) comercial. Permitindo assim um sistema aberto, interoperabilidade, portabilidade e também obedecer a standards de software aberto. Os esquemas híbridos têm a habilidade de suportar diferentes aplicações, serviços e múltiplos operadores a partilharem a mesma infraestrutura de fibra ótica.The proliferation of different mobile devices, bandwidth-intensive applications and services contribute to the increase in the broadband connections and the volume of traffic on the mobile networks. This exponential growth has put considerable pressure on the mobile network operators (MNOs). In principal, there is a need for networks that not only offer low-complexity, low-energy consumption, and extremely low-latency but also high-capacity at relatively low cost. In order to address the demand, MNOs have given significant attention to the cloud radio access network (C-RAN) due to its beneficial features in terms of performance optimization and cost-effectiveness. The de facto standard for distributing wireless signal over the C-RAN fronthaul is the common public radio interface (CPRI). However, optical links based on CPRI interfaces requires large bandwidth. Also, the aforementioned requirements can be realized with the implementation of free space optical (FSO) link, which is an optical wireless system. The FSO is an appealing alternative to the radio frequency (RF) communication system that combines the flexibility and mobility offered by the RF networks with the high-data rates provided by the optical systems. However, the FSO links are susceptible to atmospheric impairments which eventually hinder the system performance. Consequently, these limitations prevent FSO from being an efficient standalone fronthaul solution. So, precise channel characterizations and advanced technologies are required for practical FSO link deployment and operation. In this thesis, we study an efficient fronthaul implementation that is based on radio-on-FSO (RoFSO) technologies. We propose closedform expressions for fading-mitigation and for the estimation of channel capacity so as to alleviate the system complexity. Numerical simulations are presented for adaptive modulation scheme using advanced modulation formats. We also consider schemes like hybrid RF/FSO and relay-assisted transmission technologies that can help in alleviating the stringent requirements by the C-RAN backhaul/fronthaul. The propose models not only reduce the computational requirements/efforts, but also have a number of diverse merits such as high-accuracy, low-memory requirements, fast and stable operation compared to the current state-of-the-art analytical based approaches. In addition to the FSO channel characterization, we present a proof-of-concept experiment in which we study the transmission capabilities of a hybrid passive optical network (PON)-FSO system. This is implemented with the real-time receiver that is emulated by a commercial field-programmable gate array (FPGA). This helps in facilitating an open system and hence enables interoperability, portability, and open software standards. The hybrid schemes have the ability to support different applications, services, and multiple operators over a shared optical fiber infrastructure

    Multiple-Input Multiple-Output Communications Systems Using Reconfigurable Antennas

    Get PDF
    RÉSUMÉ Depuis les années 1990, l'utilisation des systèmes de communications sans-fil à entrées multiples-sorties multiples (MIMO) a été introduit pour fournir des transmissions fiables à grande vitesse. Cette thèse porte sur l'application et l’étude des systèmes MIMO avec des antennes reconfigurables, qui sont ajustable électroniquement pour produire différents diagrammes de rayonnement d'un seul élément d'antenne et ainsi offrir une diversité de diagrammes de rayonnement. En particulier, nous étudions le comportement de la capacité de canal des systèmes MIMO à sélection de diagrammes de rayonnement (PS-MIMO), et nous proposons aussi des algorithmes de sélection du diagramme de rayonnement atteignant la capacité maximale. Tout d'abord, nous étudions l'application des antennes reconfigurables dans l'estimation des statistiques spatiales à long terme de canaux spatiaux avec grappes de multi-trajets (cluster). Nous proposons un estimateur de spectre de type Capon et une technique d'adaptation de la covariance (COMET) pour estimer conjointement l'angle moyen et l’étalement angulaire de la grappe spatiale avec des antennes reconfigurables. En second lieu, sur la base des statistiques à long terme du canal MIMO, nous proposons des algorithmes de sélection de diagramme de rayonnement MIMO (SPS-MIMO) pour atteindre la capacité maximale de canal ergodique. L'analyse de la maximisation de la capacité ergodique du système SPS-MIMO indique que le modèle statistique de sélection fournit des gains supplémentaires en améliorant la puissance du signal reçu et en décorrélant les signaux reçus avec différents diagrammes de rayonnement directionnels. Troisièmement, nous nous concentrons sur le modèle de sélection instantanée des diagrammes de rayonnement MIMO (IPS-MIMO) basé sur des informations instantanées d'état de canal (CSI) afin de maximiser la capacité instantanée pour chaque réalisation de canal. Nous démontrons que l’ordre de diversité des systèmes MIMO peut être multipliée par le nombre de diagrammes de rayonnement avec sélection de diagramme instantanée. Afin d'évaluer la capacité moyenne de l'IPS-MIMO, nous proposons un nouvel algorithme qui permet d’approximer étroitement la moyenne de la valeur maximale de la capacité du canal MIMO avec des trajets arbitrairement corrélés. Nous proposons également un algorithme pour sélectionner instantanément les diagrammes de rayonnement pour atteindre la capacité moyenne. En outre, sur la base d'une simple expression en forme fermée de la capacité coefficient de corrélation, nous sommes en mesure de proposer un algorithme de sélection de sous-ensemble de diagrammes qui offre un compromis entre performances et la complexité de l’algorithme de sélection. En conclusion, des gains de performance importants peuvent être obtenus grâce à la combinaison de l'utilisation d’antennes reconfigurables et de systèmes MIMO avec soit des algorithmes de sélection de diagramme de rayonnement statistique ou instantanée. La capacité des systèmes PS-MIMO à améliorer les performances du système, y compris la capacité et de l'ordre de la diversité, est démontrée par l'analyse théorique et des simulations numériques.----------ABSTRACT Since the 1990s, the use of multiple-input multiple-output (MIMO) systems has been introduced to modern wireless communications to provide reliable transmission at high data rates. This thesis focuses on the application of MIMO systems with reconfigurable antennas, which are electronically tunable to produce a number of radiation patterns at a single antenna element and provide pattern diversity. In particular, we investigate the capacity performance of the pattern selection MIMO (PS-MIMO) systems, and we also present maximum capacity achieving algorithms for radiation pattern selection. First, we investigate the application of reconfigurable antennas in estimating long term spatial statistics of spatial clustered channels. We propose a Capon-like spectrum estimator and a covariance matching technique (COMET) to jointly estimate the mean angle and the angular spread of the spatial cluster with reconfigurable antennas. Second, based on the long term statistics of the MIMO channel, we propose statistical pattern selection MIMO (SPS-MIMO) algorithms to achieve maximum ergodic channel capacity. Analysis of the ergodic capacity maximization of the SPS-MIMO indicates that the statistical pattern selection provides additional gains by enhancing received signal power and decorrelating received signals with different directional radiation patterns. Third, we focus on the instantaneous pattern selection MIMO (IPS-MIMO) based on instantaneous channel state information (CSI) in order to maximize the instantaneous capacity for every channel realization. We prove that the diversity order of MIMO systems can be multiplied by the number of radiation patterns with instantaneous pattern selection. In order to evaluate the mean capacity of the IPS-MIMO, we propose a novel algorithm which closely approximates the mean of the maximum of the channel capacity of arbitrarily correlated MIMO channels. We also propose an algorithm for instantaneously selecting radiation patterns to achieve the mean capacity. In addition, based on a simple closed-form approximation to the capacity correlation coefficient, we are able to propose a subset pattern selection algorithm which enables the trade-off between performances and complexity. In conclusion, important extra gains can be obtained as a result of combining the use of reconfigurable antennas and MIMO systems with either statistical or instantaneous radiation pattern selection. The capability of the PS-MIMO to improve system performances, including capacity and diversity order, is demonstrated through theoretical analysis and numerical simulations

    The Multi-Input Multi-Output (MIMO) Channel Modeling, Simulation and Applications

    Get PDF
    This thesis mainly focus on the Multi-Input Multi-Output (MIMO) channel modeling, simulation and applications. There are several ways to design a MIMO channel. Most of the examples are given in Chapter 2, where we can design channels based on the environments and also based on other conditions. One of the new MIMO channel designs based on physical and virtual channel design is discussed in Unitary-Independent- Unitary (UIU) channel modeling. For completeness, the different types of capacity are discussed in details. The capacity is very important in wireless communication. By understanding the details behind different capacity, we can improve our transmission efficiently and effectively. The level crossing rate and average duration are discussed.One of the most important topics in MIMO wireless communication is estimation. Without having the right estimation in channel prediction, the performance will not be correct. The channel estimation error on the performance of the Alamouti code was discussed. The design of the transmitter, the channel and the receiver for this system model is shown. The two different types of decoding scheme were shown - the linear combining scheme and the Maximum likelihood (ML) decoder. Once the reader understands the estimation of the MIMO channel, the estimation based on different antenna correlation is discussed. Next, the model for Mobile-to-Mobile (M2M) MIMO communication link is proposed. The old M2M Sum-of-Sinusoids simulation model and the new two ring models are discussed. As the last step, the fading channel modeling using AR model is derived and the effect of ill-conditioning of the Yule-Walker equation is also shown. A number of applications is presented to show how the performance can be evaluated using the proposed model and techniques
    corecore