94,472 research outputs found

    New methods of computing the projective polynomial resultant based on dixon, jouanolou and jacobian matrices

    Get PDF
    In elimination theory, particularly when using the matrix method to compute multivariate resultant, the ultimate goal is to derive or construct techniques that give a resultant matrix that is of considerable size with simple entries. At the same time, the method should be able to produce no or less superfluous factors. In this thesis, three different techniques for computing the resultant matrix are presented, namely the Jouanolou-Jacobian method, the Dixon-Jouanolou methods for bivariate polynomials, and their generalizations to the multivariate case. The Dixon-Jouanolou method is proposed based on the existing Jouanolou matrix method which is subjected to bivariate systems. To further extend this method to multivariate systems, the entry formula for computing the Dixon resultant matrix is first generalized. This extended application of the loose entry formula leads to the possibility of generalizing the Dixon-Jouanolou method for the bivariate systems of three polynomials to systems of n+1 polynomials with n variables. In order to implement the Dixon-Jouanolou method on systems of polynomials over the affine and projective space, respectively, the concept of pseudohomogenization is introduced. Each space is subjected to its respective conditions; thus, pseudo-homogenization serves as a bridge between them by introducing an artificial variable. From the computing time analysis of the generalized loose entry formula used in the computation of the Dixon matrix entries, it is shown that the method of computing the Dixon matrix using this approach is efficient even without the application of parallel computations. These results show that the cost of computing the Dixon matrix can be reduced based on the number of additions and multiplications involved when applying the loose entry formula. These improvements can be more pronounced when parallel computations are applied. Further analyzing the results of the hybrid Dixon-Jouanolou construction and implementation, it is found that the Dixon-Jouanolou method had performed with less computational cost with cubic running time in comparison with the running time of the standard Dixon method which is quartic. Another independent construction produced in this thesis is the Jouanolou- Jacobian method which is an improvement of the existing Jacobian method since it avoids multi-polynomial divisions. The Jouanolou-Jacobian method is also able to produce a considerably smaller resultant matrix compared to the existing Jacobian method and is therefore less computationally expensive. Lastly all the proposed methods have considered a systematic way of detecting and removing extraneous factors during the computation of the resultant matrix whose determinant gives the polynomial resultant

    New methods of computing the projective polynomial resultant based on dixon, jouanolou and jacobian matrices

    Get PDF
    In elimination theory, particularly when using the matrix method to compute multivariate resultant, the ultimate goal is to derive or construct techniques that give a resultant matrix that is of considerable size with simple entries. At the same time, the method should be able to produce no or less superfluous factors. In this thesis, three different techniques for computing the resultant matrix are presented, namely the Jouanolou-Jacobian method, the Dixon-Jouanolou methods for bivariate polynomials, and their generalizations to the multivariate case. The Dixon-Jouanolou method is proposed based on the existing Jouanolou matrix method which is subjected to bivariate systems. To further extend this method to multivariate systems, the entry formula for computing the Dixon resultant matrix is first generalized. This extended application of the loose entry formula leads to the possibility of generalizing the Dixon-Jouanolou method for the bivariate systems of three polynomials to systems of n+1 polynomials with n variables. In order to implement the Dixon-Jouanolou method on systems of polynomials over the affine and projective space, respectively, the concept of pseudohomogenization is introduced. Each space is subjected to its respective conditions; thus, pseudo-homogenization serves as a bridge between them by introducing an artificial variable. From the computing time analysis of the generalized loose entry formula used in the computation of the Dixon matrix entries, it is shown that the method of computing the Dixon matrix using this approach is efficient even without the application of parallel computations. These results show that the cost of computing the Dixon matrix can be reduced based on the number of additions and multiplications involved when applying the loose entry formula. These improvements can be more pronounced when parallel computations are applied. Further analyzing the results of the hybrid Dixon-Jouanolou construction and implementation, it is found that the Dixon-Jouanolou method had performed with less computational cost with cubic running time in comparison with the running time of the standard Dixon method which is quartic. Another independent construction produced in this thesis is the Jouanolou- Jacobian method which is an improvement of the existing Jacobian method since it avoids multi-polynomial divisions. The Jouanolou-Jacobian method is also able to produce a considerably smaller resultant matrix compared to the existing Jacobian method and is therefore less computationally expensive. Lastly all the proposed methods have considered a systematic way of detecting and removing extraneous factors during the computation of the resultant matrix whose determinant gives the polynomial resultant

    An Elimination Method for Solving Bivariate Polynomial Systems: Eliminating the Usual Drawbacks

    Full text link
    We present an exact and complete algorithm to isolate the real solutions of a zero-dimensional bivariate polynomial system. The proposed algorithm constitutes an elimination method which improves upon existing approaches in a number of points. First, the amount of purely symbolic operations is significantly reduced, that is, only resultant computation and square-free factorization is still needed. Second, our algorithm neither assumes generic position of the input system nor demands for any change of the coordinate system. The latter is due to a novel inclusion predicate to certify that a certain region is isolating for a solution. Our implementation exploits graphics hardware to expedite the resultant computation. Furthermore, we integrate a number of filtering techniques to improve the overall performance. Efficiency of the proposed method is proven by a comparison of our implementation with two state-of-the-art implementations, that is, LPG and Maple's isolate. For a series of challenging benchmark instances, experiments show that our implementation outperforms both contestants.Comment: 16 pages with appendix, 1 figure, submitted to ALENEX 201

    A Generic Position Based Method for Real Root Isolation of Zero-Dimensional Polynomial Systems

    Full text link
    We improve the local generic position method for isolating the real roots of a zero-dimensional bivariate polynomial system with two polynomials and extend the method to general zero-dimensional polynomial systems. The method mainly involves resultant computation and real root isolation of univariate polynomial equations. The roots of the system have a linear univariate representation. The complexity of the method is O~B(N10)\tilde{O}_B(N^{10}) for the bivariate case, where N=max(d,τ)N=\max(d,\tau), dd resp., τ\tau is an upper bound on the degree, resp., the maximal coefficient bitsize of the input polynomials. The algorithm is certified with probability 1 in the multivariate case. The implementation shows that the method is efficient, especially for bivariate polynomial systems.Comment: 24 pages, 5 figure

    An Output-sensitive Algorithm for Computing Projections of Resultant Polytopes

    Get PDF
    We develop an incremental algorithm to compute the Newton polytope of the resultant, aka resultant polytope, or its projection along a given direction. The resultant is fundamental in algebraic elimination and in implicitization of parametric hypersurfaces. Our algorithm exactly computes vertex- and halfspace-representations of the desired polytope using an oracle producing resultant vertices in a given direction. It is output-sensitive as it uses one oracle call per vertex. We overcome the bottleneck of determinantal predicates by hashing, thus accelerating execution from 1818 to 100100 times. We implement our algorithm using the experimental CGAL package {\tt triangulation}. A variant of the algorithm computes successively tighter inner and outer approximations: when these polytopes have, respectively, 90\% and 105\% of the true volume, runtime is reduced up to 2525 times. Our method computes instances of 55-, 66- or 77-dimensional polytopes with 3535K, 2323K or 500500 vertices, resp., within 22hr. Compared to tropical geometry software, ours is faster up to dimension 55 or 66, and competitive in higher dimensions
    corecore