277 research outputs found

    CMOS-3D smart imager architectures for feature detection

    Get PDF
    This paper reports a multi-layered smart image sensor architecture for feature extraction based on detection of interest points. The architecture is conceived for 3-D integrated circuit technologies consisting of two layers (tiers) plus memory. The top tier includes sensing and processing circuitry aimed to perform Gaussian filtering and generate Gaussian pyramids in fully concurrent way. The circuitry in this tier operates in mixed-signal domain. It embeds in-pixel correlated double sampling, a switched-capacitor network for Gaussian pyramid generation, analog memories and a comparator for in-pixel analog-to-digital conversion. This tier can be further split into two for improved resolution; one containing the sensors and another containing a capacitor per sensor plus the mixed-signal processing circuitry. Regarding the bottom tier, it embeds digital circuitry entitled for the calculation of Harris, Hessian, and difference-of-Gaussian detectors. The overall system can hence be configured by the user to detect interest points by using the algorithm out of these three better suited to practical applications. The paper describes the different kind of algorithms featured and the circuitry employed at top and bottom tiers. The Gaussian pyramid is implemented with a switched-capacitor network in less than 50 μs, outperforming more conventional solutions.Xunta de Galicia 10PXIB206037PRMinisterio de Ciencia e Innovación TEC2009-12686, IPT-2011-1625-430000Office of Naval Research N00014111031

    Parallel stereo vision algorithm

    Get PDF
    Integrating a stereo-photogrammetric robot head into a real-time system requires software solutions that rapidly resolve the stereo correspondence problem. The stereo-matcher presented in this paper uses therefore code parallelisation and was tested on three different processors with x87 and AVX. The results show that a 5mega pixels colour image can be matched in 5,55 seconds or as monochrome in 3,3 seconds

    A Self Organization-Based Optical Flow Estimator with GPU Implementation

    Get PDF
    This work describes a parallelizable optical flow estimator that uses a modified batch version of the Self Organizing Map (SOM). This gradient-based estimator handles the ill-posedness in motion estimation via a novel combination of regression and a self organization strategy. The aperture problem is explicitly modeled using an algebraic framework that partitions motion estimates obtained from regression into two sets, one (set Hc) with estimates with high confidence and another (set Hp) with low confidence estimates. The self organization step uses a uniquely designed pair of training set (Q=Hc) and the initial weights set (W=Hc U Hp). It is shown that with this specific choice of training and initial weights sets, the interpolation of flow vectors is achieved primarily due to the regularization property of SOM. Moreover, the computationally involved step of finding the winner unit in SOM simplifies to indexing into a 2D array making the algorithm parallelizable and highly scalable. To preserve flow discontinuities at occlusion boundaries, we have designed anisotropic neighborhood function for SOM that uses a novel OFCE residual-based distance measure. A multi-resolution or pyramidal approach is used to estimate large motion. As the algorithm is scalable, with sufficient number of computing cores (for example on a GPU), the implementation of the estimator can be made real-time. With the available true motion from Middlebury database, error metrics are computed

    Low-Power CMOS Vision Sensor for Gaussian Pyramid Extraction

    Get PDF
    This paper introduces a CMOS vision sensor chip in a standard 0.18 μm CMOS technology for Gaussian pyramid extraction. The Gaussian pyramid provides computer vision algorithms with scale invariance, which permits having the same response regardless of the distance of the scene to the camera. The chip comprises 176×120 photosensors arranged into 88×60 processing elements (PEs). The Gaussian pyramid is generated with a double-Euler switched capacitor (SC) network. Every PE comprises four photodiodes, one 8 b single-slope analog-to-digital converter, one correlated double sampling circuit, and four state capacitors with their corresponding switches to implement the double-Euler SC network. Every PE occupies 44×44 μm2 . Measurements from the chip are presented to assess the accuracy of the generated Gaussian pyramid for visual tracking applications. Error levels are below 2% full-scale output, thus making the chip feasible for these applications. Also, energy cost is 26.5 nJ/px at 2.64 Mpx/s, thus outperforming conventional solutions of imager plus microprocessor unit.Office of Naval Research, USA N00014-14-1-0355Ministerio de Economía y Competitividad TEC2015-66878- C3-1-R, TEC2015-66878-C3-3-RJunta de Andalucía TIC 2338, EM2013/038, EM2014/01

    Decoupling algorithms from schedules for easy optimization of image processing pipelines

    Get PDF
    Using existing programming tools, writing high-performance image processing code requires sacrificing readability, portability, and modularity. We argue that this is a consequence of conflating what computations define the algorithm, with decisions about storage and the order of computation. We refer to these latter two concerns as the schedule, including choices of tiling, fusion, recomputation vs. storage, vectorization, and parallelism. We propose a representation for feed-forward imaging pipelines that separates the algorithm from its schedule, enabling high-performance without sacrificing code clarity. This decoupling simplifies the algorithm specification: images and intermediate buffers become functions over an infinite integer domain, with no explicit storage or boundary conditions. Imaging pipelines are compositions of functions. Programmers separately specify scheduling strategies for the various functions composing the algorithm, which allows them to efficiently explore different optimizations without changing the algorithmic code. We demonstrate the power of this representation by expressing a range of recent image processing applications in an embedded domain specific language called Halide, and compiling them for ARM, x86, and GPUs. Our compiler targets SIMD units, multiple cores, and complex memory hierarchies. We demonstrate that it can handle algorithms such as a camera raw pipeline, the bilateral grid, fast local Laplacian filtering, and image segmentation. The algorithms expressed in our language are both shorter and faster than state-of-the-art implementations.National Science Foundation (U.S.) (Grant 0964004)National Science Foundation (U.S.) (Grant 0964218)National Science Foundation (U.S.) (Grant 0832997)United States. Dept. of Energy (Award DE-SC0005288)Cognex CorporationAdobe System

    High-resolution ab initio three-dimensional X-ray diffraction microscopy

    Full text link
    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.Comment: 22 pages, 11 figures, submitte
    corecore