773 research outputs found

    An Efficient Maximum-Likelihood Decoding of LDPC Codes Over the Binary Erasure Channel

    Full text link

    A Decoding Algorithm for LDPC Codes Over Erasure Channels with Sporadic Errors

    Get PDF
    none4An efficient decoding algorithm for low-density parity-check (LDPC) codes on erasure channels with sporadic errors (i.e., binary error-and-erasure channels with error probability much smaller than the erasure probability) is proposed and its performance analyzed. A general single-error multiple-erasure (SEME) decoding algorithm is first described, which may be in principle used with any binary linear block code. The algorithm is optimum whenever the non-erased part of the received word is affected by at most one error, and is capable of performing error detection of multiple errors. An upper bound on the average block error probability under SEME decoding is derived for the linear random code ensemble. The bound is tight and easy to implement. The algorithm is then adapted to LDPC codes, resulting in a simple modification to a previously proposed efficient maximum likelihood LDPC erasure decoder which exploits the parity-check matrix sparseness. Numerical results reveal that LDPC codes under efficient SEME decoding can closely approach the average performance of random codes.noneG. Liva; E. Paolini; B. Matuz; M. ChianiG. Liva; E. Paolini; B. Matuz; M. Chian

    Erasure Codes with a Banded Structure for Hybrid Iterative-ML Decoding

    Get PDF
    This paper presents new FEC codes for the erasure channel, LDPC-Band, that have been designed so as to optimize a hybrid iterative-Maximum Likelihood (ML) decoding. Indeed, these codes feature simultaneously a sparse parity check matrix, which allows an efficient use of iterative LDPC decoding, and a generator matrix with a band structure, which allows fast ML decoding on the erasure channel. The combination of these two decoding algorithms leads to erasure codes achieving a very good trade-off between complexity and erasure correction capability.Comment: 5 page

    Analysis of Quasi-Cyclic LDPC codes under ML decoding over the erasure channel

    Get PDF
    In this paper, we show that Quasi-Cyclic LDPC codes can efficiently accommodate the hybrid iterative/ML decoding over the binary erasure channel. We demonstrate that the quasi-cyclic structure of the parity-check matrix can be advantageously used in order to significantly reduce the complexity of the ML decoding. This is achieved by a simple row/column permutation that transforms a QC matrix into a pseudo-band form. Based on this approach, we propose a class of QC-LDPC codes with almost ideal error correction performance under the ML decoding, while the required number of row/symbol operations scales as kkk\sqrt{k}, where kk is the number of source symbols.Comment: 6 pages, ISITA1

    Finite Length Analysis of LDPC Codes

    Full text link
    In this paper, we study the performance of finite-length LDPC codes in the waterfall region. We propose an algorithm to predict the error performance of finite-length LDPC codes over various binary memoryless channels. Through numerical results, we find that our technique gives better performance prediction compared to existing techniques.Comment: Submitted to WCNC 201
    corecore