1,378 research outputs found

    Performance Comparison of Handover Rerouting Schemes in Wireless ATM Networks

    Get PDF
    The major issue of the integration of wireless and wired ATM is the support of user mobility. In effect, many technical challenges have been posed due to mobility support. One of the most important challenges is the rerouting of active connections of mobile user during handover. The rerouting of connections must exhibit low handover latency, limit the handover delay or disruption time, maintain efficient routes and minimise the impact on existing infrastructure. To date, two dominant approaches have been proposed to support mobility into fixed ATM network. The first is the mobility enhanced switches approach and the second is the separate network-elements specific to mobility approach. The first approach implies updating the existing ATM switches with mobile specific features. The mobility functions in the second approach are entrusted to a control station attached to the ATM switch as is implemented by the Magic WAND projects. In this thesis, we investigate how mobility can be supported using both approaches. To demonstrate the effectiveness of the above approaches, we compare the performance by analytically derived formulate for their hand over latency, hand over delay, buffer size, and bandwidth requirements. The formulate were derived for both backward and forward hand overs using a number of potential rerouting schemes proposed for wireless ATM network. The results show that the mobility enhanced switches approach has slightly better performance than the separate network elements approach. The results also show that backward handover has better performance than forward handover in terms of the handover delay and buffer requirement. Finally, the results show that the Anchor Switch rerouting scheme is the best among other rerouting schemes proposed for wireless ATM

    Implications of Implementing HDTV Over Digital Subscriber Line Networks

    Get PDF
    This thesis addresses the different challenges a telecommunications company would face when trying to implement an HDTV video service over a Digital Subscriber Line (DSL) connection. Each challenge is discussed in detail and a technology, protocol, or method is suggested to overcome that particular challenge. One of the biggest challenges is creating a network architecture that can provide enough bandwidth to support video over a network that was originally designed for voice traffic. The majority of the network connections to a customer premises in a telephony network consists of a copper pair. This type of connection is not optimal for high bandwidth services. This limitation can be overcome using Gigabit Ethernet (GE) over fiber in the core part of the network and VDSL2 in the access part of the network. For the purposes of this document, the core portion of the network is considered to be an area equal to several counties or approximately 50 miles in radius. The core network starts at the primary central office (CO) and spreads out to central offices in suburbs and small towns. The primary central office is a central point in the telecom operator\u27s network. Large trunks are propagated from the primary central office to smaller central offices making up the core network. The access portion of the network is considered to be an area within a suburb or small town from the central office to a subscriber\u27s home. Appendix A, located on page 60, contains a network diagram illustrating the scope of each of the different portions of the network. Considerations must also be given for the internal network to the residence such as category 5 (Cat5) cable or higher grade and network equipment that can provide up to 30 Megabits per second (Mbps) connections or throughput. The equipment in the telecommunications network also plays a part in meeting the challenge of 30 Mbps bandwidth. GE switches should be used with single mode fiber optic cable in the core part of the network. Digital Subscriber Line Access Multiplexers (DSLAM) with the capability to filter Internet Group Management Protocol (IGMP) messages should be used in the access part of the network to facilitate bandwidth utilization. Placement of this equipment and how the data is aggregated is another issue to consider when implementing HDTV service. Another major challenge facing the implementation of HDTV over DSL networks is controlling quality of service (QoS) throughout the network. Class of Service (CoS) and Differentiated Services (DiffServ) is a method of QoS that would enable video packets to have a higher priority and less delay than other data packets. The consumer could have data, video, and voice traffic all over the same DSL connection. Data, video and voice packets would need to have a different priority in order to maintain appropriate QoS levels for each service. The use of advanced technology in video encoding will be essential to the success of the video service. MPEG-2, MPEG-4, and Windows Media 9 are just a few of the video encoding technologies that could be used to reduce the necessary bandwidth for HDTV. The advancement of this technology is essential to allow telecommunications providers to offer HDTV. Another challenge for the telecom operator concerns the security of the network and service after implementation. Theft of service will be another area that the telecomm operator will be forced to resolve. The cable operators currently face this issue and lose millions of dollars in revenue. Authentication, IP filtering and MAC address blocking are a few possible solutions to this problem

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Convergence: the next big step

    Get PDF
    Recently, web based multimedia services have gained popularity and have proven themselves to be viable means of communication. This has inspired the telecommunication service providers and network operators to reinvent themselves to try and provide value added IP centric services. There was need for a system which would allow new services to be introduced rapidly with reduced capital expense (CAPEX) and operational expense (OPEX) through increased efficiency in network utilization. Various organizations and standardization agencies have been working together to establish such a system. Internet Protocol Multimedia Subsystem (IMS) is a result of these efforts. IMS is an application level system. It is being developed by 3GPP (3rd Generation Partnership Project) and 3GPP2 (3rd Generation Partnership Project 2) in collaboration with IETF (Internet Engineering Task Force), ITU-T (International Telecommunication Union – Telecommunication Standardization Sector), and ETSI (European Telecommunications Standards Institute) etc. Initially, the main aim of IMS was to bring together the internet and the cellular world, but it has extended to include traditional wire line telecommunication systems as well. It utilizes existing internet protocols such as SIP (Session Initiation Protocol), AAA (Authentication, Authorization and Accounting protocol), and COPS (Common Open Policy Service) etc, and modifies them to meet the stringent requirements of reliable, real time communication systems. The advantages of IMS include easy service quality management (QoS), mobility management, service control and integration. At present a lot of attention is being paid to providing bundled up services in the home environment. Service providers have been successful in providing traditional telephony, high speed internet and cable services in a single package. But there is very little integration among these services. IMS can provide a way to integrate them as well as extend the possibility of various other services to be added to allow increased automation in the home environment. This thesis extends the concept of IMS to provide convergence and facilitate internetworking of the various bundled services available in the home environment; this may include but is not limited to communications (wired and wireless), entertainment, security etc. In this thesis, I present a converged home environment which has a number of elements providing a variety of communication and entertainment services. The proposed network would allow effective interworking of these elements, based on IMS architecture. My aim is to depict the possible advantages of using IMS to provide convergence, automation and integration at the residential level

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Technology Directions for the 21st Century

    Get PDF
    New technologies will unleash the huge capacity of fiber-optic cable to meet growing demands for bandwidth. Companies will continue to replace private networks with public network bandwidth-on-demand. Although asynchronous transfer mode (ATM) is the transmission technology favored by many, its penetration will be slower than anticipated. Hybrid networks - e.g., a mix of ATM, frame relay, and fast Ethernet - may predominate, both as interim and long-term solutions, based on factors such as availability, interoperability, and cost. Telecommunications equipment and services prices will decrease further due to increased supply and more competition. Explosive Internet growth will continue, requiring additional backbone transmission capacity and enhanced protocols, but it is not clear who will fund the upgrade. Within ten years, space-based constellations of satellites in Low Earth orbit (LEO) will serve mobile users employing small, low-power terminals. 'Little LEO's' will provide packet transmission services and geo-position determination. 'Big LEO's' will function as global cellular telephone networks, with some planning to offer video and interactive multimedia services. Geosynchronous satellites also are proposed for mobile voice grade links and high-bandwidth services. NASA may benefit from resulting cost reductions in components, space hardware, launch services, and telecommunications services

    Smart ATM Security and Alert System with Real-Time Monitoring

    Get PDF
    The growing adoption of automated teller machines (ATMs) worldwide, ensuring the security of ATM transactions and protecting customer data has become a critical concern for the banking industry. In this research paper, we proposed an Internet of Things (IoT) based ATM security system using the NodeMCU ESP8266 module, PIR (Passive Infrared) sensor, LCD display with I2C interface, and the Telegram app. The proposed system utilizes the NodeMCU ESP8266 module, which is a low-cost Wi-Fi enabled microcontroller, as the main controller for the security system. The PIR sensor is used to detect motion or presence near the ATM, which can potentially indicate unauthorized access. The LCD display with I2C interface is used to provide real-time status information about the ATM, such as Motion Detected or NO Motion. When the PIR sensor detects any suspicious activity near the ATM, the NodeMCU ESP8266 module sends a notification to the ATM owner or security personnel via the Telegram app. The notification includes details about the detected activity, allowing the owner or security personnel to take immediate action. The real- time alerts enable prompt response to potential security breaches and help prevent unauthorized access to the ATM

    Convergence, digitisation and new technologies: Toward the next generation network

    Get PDF
    https://doi.org/10.23962/10539/19838https://doi.org/10.23962/10539/1983
    • 

    corecore