29 research outputs found

    High-Performance NB-LDPC Decoder With Reduction of Message Exchange

    Full text link
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a novel algorithm based on trellis min-max for decoding non-binary low-density parity-check (NB-LDPC) codes. This decoder reduces the number of messages exchanged between check node and variable node processors, which decreases the storage resources and the wiring congestion and, thus, increases the throughput of the decoder. Our frame error rate performance simulations show that the proposed algorithm has a negligible performance loss for high-rate codes with GF(16) and GF(32), and a performance loss smaller than 0.07 dB for high-rate codes over GF(64). In addition, a layered decoder architecture is presented and implemented on a 90-nm CMOS process for the following high-rate NB-LDPC codes: (2304, 2048) over GF(16), (837, 726) over GF(32), and (1536, 1344) over GF(64). In all cases, the achieved throughput is higher than 1 Gb/s.This work was supported in part by the Spanish Ministerio de Ciencia e Innovacion under Grant TEC2011-27916 and Grant TEC2012-38558-C02-02, and in part by Generalitat Valenciana under Grant GV/2014/011.Lacruz, JO.; García Herrero, FM.; Canet Subiela, MJ.; Valls Coquillat, J. (2016). High-Performance NB-LDPC Decoder With Reduction of Message Exchange. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 24(5):1950-1961. https://doi.org/10.1109/TVLSI.2015.2493041S1950196124

    Reduced-complexity Non-Binary LDPC decoder for high-order Galois fields based on Trellis Min-Max algorithm

    Full text link
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Non-binary LDPC codes outperform its binary counterparts in different scenarios. However, they require a considerable increase in complexity, especially in the check-node processor, for high-order Galois fields higher than GF(16). To overcome this drawback, we propose an approximation for the Trellis Min-Max algorithm which allows us to reduce the number of exchanged messages between check node and variable node compared to previous proposals from literature. On the other hand, we reduce the complexity in the check-node processor, keeping the parallel computation of messages. We implemented a layered scheduled decoder, based on this algorithm, in a 90nm CMOS technology for the (837,723) NB-LDPC code over GF(32) and the (1536,1344) over GF(64), achieving an area saving of 16% and 36% for the check-node and 10% and 12% for the whole decoder, respectively. The throughput is 1.07 Gbps and 1.26 Gbps, which outperforms the state-of-the-art of high-rate decoders with high GF order from literature.This work was supported in part by the Spanish Ministerio de Ciencia e Innovacion under Grant TEC2011-27916 and Grant TEC2012-38558-C02-02 and in part by Generalitat Valenciana under Grant GV/2014/011.Lacruz, JO.; García Herrero, FM.; Canet Subiela, MJ.; Valls Coquillat, J. (2016). Reduced-complexity Non-Binary LDPC decoder for high-order Galois fields based on Trellis Min-Max algorithm. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 1-11. https://doi.org/10.1109/TVLSI.2016.2514484S11

    VLSI algorithms and architectures for non-binary-LDPC decoding

    Full text link
    Tesis por compendio[EN] This thesis studies the design of low-complexity soft-decision Non-Binary Low-Density Parity-Check (NB-LDPC) decoding algorithms and their corresponding hardware architectures suitable for decoding high-rate codes at high throughput (hundreds of Mbps and Gbps). In the first part of the thesis the main aspects concerning to the NB-LDPC codes are analyzed, including a study of the main bottlenecks of conventional softdecision decoding algorithms (Q-ary Sum of Products (QSPA), Extended Min-Sum (EMS), Min-Max and Trellis-Extended Min-Sum (T-EMS)) and their corresponding hardware architectures. Despite the limitations of T-EMS algorithm (high complexity in the Check Node (CN) processor, wiring congestion due to the high number of exchanged messages between processors and the inability to implement decoders over high-order Galois fields due to the high decoder complexity), it was selected as starting point for this thesis due to its capability to reach high-throughput. Taking into account the identified limitations of the T-EMS algorithm, the second part of the thesis includes six papers with the results of the research made in order to mitigate the T-EMS disadvantages, offering solutions that reduce the area, the latency and increase the throughput compared to previous proposals from literature without sacrificing coding gain. Specifically, five low-complexity decoding algorithms are proposed, which introduce simplifications in different parts of the decoding process. Besides, five complete decoder architectures are designed and implemented on a 90nm Complementary Metal-Oxide-Semiconductor (CMOS) technology. The results show an achievement in throughput higher than 1Gbps and an area less than 10 mm2. The increase in throughput is 120% and the reduction in area is 53% compared to previous implementations of T-EMS, for the (837,726) NB-LDPC code over GF(32). The proposed decoders reduce the CN area, latency, wiring between CN and Variable Node (VN) processor and the number of storage elements required in the decoder. Considering that these proposals improve both area and speed, the efficiency parameter (Mbps / Million NAND gates) is increased in almost five times compared to other proposals from literature. The improvements in terms of area allow us to implement NB-LDPC decoders over high-order fields which had not been possible until now due to the highcomplexity of decoders previously proposed in literature. Therefore, we present the first post-place and route report for high-rate codes over high-order fields higher than Galois Field (GF)(32). For example, for the (1536,1344) NB-LDPC code over GF(64) the throughput is 1259Mbps occupying an area of 28.90 mm2. On the other hand, a decoder architecture is implemented on a Field Programmable Gate Array (FPGA) device achieving 630 Mbps for the high-rate (2304,2048) NB-LDPC code over GF(16). To the best knowledge of the author, these results constitute the highest ones presented in literature for similar codes and implemented on the same technologies.[ES] En esta tesis se aborda el estudio del diseño de algoritmos de baja complejidad para la decodificación de códigos de comprobación de paridad de baja densidad no binarios (NB-LDPC) y sus correspondientes arquitecturas apropiadas para decodificar códigos de alta tasa a altas velocidades (cientos de Mbps y Gbps). En la primera parte de la tesis los principales aspectos concernientes a los códigos NB-LDPC son analizados, incluyendo un estudio de los principales cuellos de botella presentes en los algoritmos de decodificación convencionales basados en decisión blanda (QSPA, EMS, Min-Max y T-EMS) y sus correspondientes arquitecturas hardware. A pesar de las limitaciones del algoritmo T-EMS (alta complejidad en el procesador del nodo de chequeo de paridad (CN), congestión en el rutado debido al intercambio de mensajes entre procesadores y la incapacidad de implementar decodificadores para campos de Galois de orden elevado debido a la elevada complejidad), éste fue seleccionado como punto de partida para esta tesis debido a su capacidad para alcanzar altas velocidades. Tomando en cuenta las limitaciones identificadas en el algoritmo T-EMS, la segunda parte de la tesis incluye seis artículos con los resultados de la investigación realizada con la finalidad de mitigar las desventajas del algoritmo T-EMS, ofreciendo soluciones que reducen el área, la latencia e incrementando la velocidad comparado con propuestas previas de la literatura sin sacrificar la ganancia de codificación. Especificamente, cinco algoritmos de decodificación de baja complejidad han sido propuestos, introduciendo simplificaciones en diferentes partes del proceso de decodificación. Además, arquitecturas completas de decodificadores han sido diseñadas e implementadas en una tecnologia CMOS de 90nm consiguiéndose una velocidad mayor a 1Gbps con un área menor a 10 mm2, aumentando la velocidad en 120% y reduciendo el área en 53% comparado con previas implementaciones del algoritmo T-EMS para el código (837,726) implementado sobre campo de Galois GF(32). Las arquitecturas propuestas reducen el área del CN, latencia, número de mensajes intercambiados entre el nodo de comprobación de paridad (CN) y el nodo variable (VN) y el número de elementos de almacenamiento en el decodificador. Considerando que estas propuestas mejoran tanto el área comola velocidad, el parámetro de eficiencia (Mbps / Millones de puertas NAND) se ha incrementado en casi cinco veces comparado con otras propuestas de la literatura. Las mejoras en términos de área nos ha permitido implementar decodificadores NBLDPC sobre campos de Galois de orden elevado, lo cual no habia sido posible hasta ahora debido a la alta complejidad de los decodificadores anteriormente propuestos en la literatura. Por lo tanto, en esta tesis se presentan los primeros resultados incluyendo el emplazamiento y rutado para códigos de alta tasa sobre campos finitos de orden mayor a GF(32). Por ejemplo, para el código (1536,1344) sobre GF(64) la velocidad es 1259 Mbps ocupando un área de 28.90 mm2. Por otro lado, una arquitectura de decodificador ha sido implementada en un dispositivo FPGA consiguiendo 660 Mbps de velocidad para el código de alta tasa (2304,2048) sobre GF(16). Estos resultados constituyen, según el mejor conocimiento del autor, los mayores presentados en la literatura para códigos similares implementados para las mismas tecnologías.[CA] En esta tesi s'aborda l'estudi del disseny d'algoritmes de baixa complexitat per a la descodificació de codis de comprovació de paritat de baixa densitat no binaris (NB-LDPC), i les seues corresponents arquitectures per a descodificar codis d'alta taxa a altes velocitats (centenars de Mbps i Gbps). En la primera part de la tesi els principals aspectes concernent als codis NBLDPC són analitzats, incloent un estudi dels principals colls de botella presents en els algoritmes de descodificació convencionals basats en decisió blana (QSPA, EMS, Min-Max i T-EMS) i les seues corresponents arquitectures. A pesar de les limitacions de l'algoritme T-EMS (alta complexitat en el processador del node de revisió de paritat (CN), congestió en el rutat a causa de l'intercanvi de missatges entre processadors i la incapacitat d'implementar descodificadors per a camps de Galois d'orde elevat a causa de l'elevada complexitat), este va ser seleccionat com a punt de partida per a esta tesi degut a la seua capacitat per a aconseguir altes velocitats. Tenint en compte les limitacions identificades en l'algoritme T-EMS, la segona part de la tesi inclou sis articles amb els resultats de la investigació realitzada amb la finalitat de mitigar els desavantatges de l'algoritme T-EMS, oferint solucions que redueixen l'àrea, la latència i incrementant la velocitat comparat amb propostes prèvies de la literatura sense sacrificar el guany de codificació. Específicament, s'han proposat cinc algoritmes de descodificació de baixa complexitat, introduint simplificacions en diferents parts del procés de descodificació. A més, s'han dissenyat arquitectures completes de descodificadors i s'han implementat en una tecnologia CMOS de 90nm aconseguint-se una velocitat major a 1Gbps amb una àrea menor a 10 mm2, augmentant la velocitat en 120% i reduint l'àrea en 53% comparat amb prèvies implementacions de l'algoritme T-EMS per al codi (837,726) implementat sobre camp de Galois GF(32). Les arquitectures proposades redueixen l'àrea del CN, la latència, el nombre de missatges intercanviats entre el node de comprovació de paritat (CN) i el node variable (VN) i el nombre d'elements d'emmagatzemament en el descodificador. Considerant que estes propostes milloren tant l'àrea com la velocitat, el paràmetre d'eficiència (Mbps / Milions deportes NAND) s'ha incrementat en quasi cinc vegades comparat amb altres propostes de la literatura. Les millores en termes d'àrea ens ha permès implementar descodificadors NBLDPC sobre camps de Galois d'orde elevat, la qual cosa no havia sigut possible fins ara a causa de l'alta complexitat dels descodificadors anteriorment proposats en la literatura. Per tant, nosaltres presentem els primers reports després de l'emplaçament i rutat per a codis d'alta taxa sobre camps finits d'orde major a GF(32). Per exemple, per al codi (1536,1344) sobre GF(64) la velocitat és 1259 Mbps ocupant una àrea de 28.90 mm2. D'altra banda, una arquitectura de descodificador ha sigut implementada en un dispositiu FPGA aconseguint 660 Mbps de velocitat per al codi d'alta taxa (2304,2048) sobre GF(16). Estos resultats constitueixen, per al millor coneixement de l'autor, els millors presentats en la literatura per a codis semblants implementats per a les mateixes tecnologies.Lacruz Jucht, JO. (2016). VLSI algorithms and architectures for non-binary-LDPC decoding [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/73266TESISCompendi

    Parallel Nonbinary LDPC Decoding on GPU

    Get PDF
    Nonbinary Low-Density Parity-Check (LDPC) codes are a class of error-correcting codes constructed over the Galois field GF(q) for q > 2. As extensions of binary LDPC codes, nonbinary LDPC codes can provide better error-correcting performance when the code length is short or moderate, but at a cost of higher decoding complexity. This paper proposes a massively parallel implementation of a nonbinary LDPC decoding accelerator based on a graphics processing unit (GPU) to achieve both great flexibility and scalability. The implementation maps the Min-Max decoding algorithm to GPU’s massively parallel architecture. We highlight the methodology to partition the decoding task to a heterogeneous platform consisting of the CPU and GPU. The experimental results show that our GPUbased implementation can achieve high throughput while still providing great flexibility and scalability.National Science Foundation (NSF

    High Performance Decoder Architectures for Error Correction Codes

    Get PDF
    Due to the rapid development of the information industry, modern communication and storage systems require much higher data rates and reliability to server various demanding applications. However, these systems suffer from noises from the practical channels. Various error correction codes (ECCs), such as Reed-Solomon (RS) codes, convolutional codes, turbo codes, Low-Density Parity-Check (LDPC) codes and so on, have been adopted in lots of current standards. With the increasing data rate, the research of more advanced ECCs and the corresponding efficient decoders will never stop.Binary LDPC codes have been adopted in lots of modern communication and storage applications due their superior error performance and efficient hardware decoder implementations. Non-binary LDPC (NB-LDPC) codes are an important extension of traditional binary LDPC codes. Compared with its binary counterpart, NB-LDPC codes show better error performance under short to moderate block lengths and higher order modulations. Moreover, NB-LDPC codes have lower error floor than binary LDPC codes. In spite of the excellent error performance, it is hard for current communication and storage systems to adopt NB-LDPC codes due to complex decoding algorithms and decoder architectures. In terms of hardware implementation, current NB-LDPC decoders need much larger area and achieve much lower data throughput.Besides the recently proposed NB-LDPC codes, polar codes, discovered by Ar{\i}kan, appear as a very promising candidate for future communication and storage systems. Polar codes are considered as a major breakthrough in recent coding theory society. Polar codes are proved to be capacity achieving codes over binary input symmetric memoryless channels. Besides, polar codes can be decoded by the successive cancelation (SC) algorithm with of complexity of O(Nlog2N)\mathcal{O}(N\log_2 N), where NN is the block length. The main sticking point of polar codes to date is that their error performance under short to moderate block lengths is inferior compared with LDPC codes or turbo codes. The list decoding technique can be used to improve the error performance of SC algorithms at the cost higher computational and memory complexities. Besides, the hardware implementation of current SC based decoders suffer from long decoding latency which is unsuitable for modern high speed communications.ECCs also find their applications in improving the reliability of network coding. Random linear network coding is an efficient technique for disseminating information in networks, but it is highly susceptible to errors. K\ {o}tter-Kschischang (KK) codes and Mahdavifar-Vardy (MV) codes are two important families of subspace codes that provide error control in noncoherent random linear network coding. List decoding has been used to decode MV codes beyond half distance. Existing hardware implementations of the rank metric decoder for KK codes suffer from limited throughput, long latency and high area complexity. The interpolation-based list decoding algorithm for MV codes still has high computational complexity, and its feasibility for hardware implementations has not been investigated.In this exam, we present efficient decoding algorithms and hardware decoder architectures for NB-LDPC codes, polar codes, KK and MV codes. For NB-LDPC codes, an efficient shuffled decoder architecture is presented to reduce the number of average iterations and improve the throughput. Besides, a fully parallel decoder architecture for NB-LDPC codes with short or moderate block lengths is also presented. Our fully parallel decoder architecture achieves much higher throughput and area efficiency compared with the state-of-art NB-LDPC decoders. For polar codes, a memory efficient list decoder architecture is first presented. Based on our reduced latency list decoding algorithm for polar codes, a high throughput list decoder architecture is also presented. At last, we present efficient decoder architectures for both KK and MV codes

    Simplified trellis min-max decoder architecture for nonbinary low-density parity-check codes

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Nonbinary low-density parity-check (NB-LDPC) codes have become an efficient alternative to their binary counterparts in different scenarios, such as moderate codeword lengths, high-order modulations, and burst error correction. Unfortunately, the complexity of NB-LDPC decoders is still too high for practical applications, especially for the check node (CN) processing, which limits the maximum achievable throughput. Although a great effort has been made in the recent literature to overcome this disadvantage, the proposed decoders are still not ready for high-speed implementations for high-order fields. In this paper, a simplified trellis min max algorithm is proposed, where the CN messages are computed in a parallel way using only the most reliable information. The proposed CN algorithm is implemented using a horizontal layered schedule. The overall decoder architecture has been implemented in a 90-nm CMOS process for a ((N=837) and (K=726)) NB-LDPC code over GF(32), achieving a throughput of 660 Mb/s at nine iterations based on postlayout results. This decoder increases hardware efficiency compared with the existing recent solutions for the same code.This work was supported in part by the Spanish Ministerio de Ciencia e Innovacion under Grant TEC2011-27916; in part by the Universitat Politecnica de Valencia, Gandia, Spain, under Grant PAID-06-2012-SP20120625; and in part by the Institut Universitaire de France, Rennes, France. The work of F. Garcia-Herrero was supported in part by the Spanish Ministerio de Educacion under Grant AP2010-5178 and in part by the Institute Universitaire de France.Lacruz Jucht, JO.; García Herrero, FM.; Declercq, D.; Valls Coquillat, J. (2015). Simplified trellis min-max decoder architecture for nonbinary low-density parity-check codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 23(9):1783-1792. https://doi.org/10.1109/TVLSI.2014.2344113S1783179223

    VLSI Implementation of a Non-Binary Decoder Based on the Analog Digital Belief Propagation

    Get PDF
    This work presents the VLSI hardware implementation of a novel Belief Propagation (BP) algorithm introduced in [1] and named as Analog Digital Belief Propagation (ADBP). The ADBP algorithm works on factor graphs over linear models and uses messages in the form of Gaussian like probability distributions by tracking their parameters. In particular, ADBP can deal with system variables that are discrete and/or wrapped. A variant of ADBP can then be applied for the iterative decoding of a particular class of non binary codes and yields decoders with complexity independent of alphabet size M, thus allowing to construct ecient decoders for digital transmission systems with unbounded spectral eciency. In this work, we propose some simplifications to the updating rules for ADBP algorithm that are suitable for hardware implementation. In addition, we analyze the eect of finite precision on the decoding performance of the algorithm. A careful selection of quantization scheme for input, output and intermediate variables allows us to construct a complete ADBP decoding architecture that performs close to the double precision implementation and shows a promising complexity for large values of M. Finally, synthesis results of the main processing elements of ADBP are reported for 45 nm standard cell ASIC technology

    Flexible LDPC Decoder Architectures

    Get PDF
    Flexible channel decoding is getting significance with the increase in number of wireless standards and modes within a standard. A flexible channel decoder is a solution providing interstandard and intrastandard support without change in hardware. However, the design of efficient implementation of flexible low-density parity-check (LDPC) code decoders satisfying area, speed, and power constraints is a challenging task and still requires considerable research effort. This paper provides an overview of state-of-the-art in the design of flexible LDPC decoders. The published solutions are evaluated at two levels of architectural design: the processing element (PE) and the interconnection structure. A qualitative and quantitative analysis of different design choices is carried out, and comparison is provided in terms of achieved flexibility, throughput, decoding efficiency, and area (power) consumption
    corecore