15,723 research outputs found

    Structured FISTA for Image Restoration

    Full text link
    In this paper, we propose an efficient numerical scheme for solving some large scale ill-posed linear inverse problems arising from image restoration. In order to accelerate the computation, two different hidden structures are exploited. First, the coefficient matrix is approximated as the sum of a small number of Kronecker products. This procedure not only introduces one more level of parallelism into the computation but also enables the usage of computationally intensive matrix-matrix multiplications in the subsequent optimization procedure. We then derive the corresponding Tikhonov regularized minimization model and extend the fast iterative shrinkage-thresholding algorithm (FISTA) to solve the resulting optimization problem. Since the matrices appearing in the Kronecker product approximation are all structured matrices (Toeplitz, Hankel, etc.), we can further exploit their fast matrix-vector multiplication algorithms at each iteration. The proposed algorithm is thus called structured fast iterative shrinkage-thresholding algorithm (sFISTA). In particular, we show that the approximation error introduced by sFISTA is well under control and sFISTA can reach the same image restoration accuracy level as FISTA. Finally, both the theoretical complexity analysis and some numerical results are provided to demonstrate the efficiency of sFISTA

    Subspace correction methods for total variation and ℓ1−\ell_1-minimization

    Full text link
    This paper is concerned with the numerical minimization of energy functionals in Hilbert spaces involving convex constraints coinciding with a semi-norm for a subspace. The optimization is realized by alternating minimizations of the functional on a sequence of orthogonal subspaces. On each subspace an iterative proximity-map algorithm is implemented via \emph{oblique thresholding}, which is the main new tool introduced in this work. We provide convergence conditions for the algorithm in order to compute minimizers of the target energy. Analogous results are derived for a parallel variant of the algorithm. Applications are presented in domain decomposition methods for singular elliptic PDE's arising in total variation minimization and in accelerated sparse recovery algorithms based on â„“1\ell_1-minimization. We include numerical examples which show efficient solutions to classical problems in signal and image processing.Comment: 33 page

    Learning optimal nonlinearities for iterative thresholding algorithms

    Full text link
    Iterative shrinkage/thresholding algorithm (ISTA) is a well-studied method for finding sparse solutions to ill-posed inverse problems. In this letter, we present a data-driven scheme for learning optimal thresholding functions for ISTA. The proposed scheme is obtained by relating iterations of ISTA to layers of a simple deep neural network (DNN) and developing a corresponding error backpropagation algorithm that allows to fine-tune the thresholding functions. Simulations on sparse statistical signals illustrate potential gains in estimation quality due to the proposed data adaptive ISTA

    Transformed Schatten-1 Iterative Thresholding Algorithms for Low Rank Matrix Completion

    Full text link
    We study a non-convex low-rank promoting penalty function, the transformed Schatten-1 (TS1), and its applications in matrix completion. The TS1 penalty, as a matrix quasi-norm defined on its singular values, interpolates the rank and the nuclear norm through a nonnegative parameter a. We consider the unconstrained TS1 regularized low-rank matrix recovery problem and develop a fixed point representation for its global minimizer. The TS1 thresholding functions are in closed analytical form for all parameter values. The TS1 threshold values differ in subcritical (supercritical) parameter regime where the TS1 threshold functions are continuous (discontinuous). We propose TS1 iterative thresholding algorithms and compare them with some state-of-the-art algorithms on matrix completion test problems. For problems with known rank, a fully adaptive TS1 iterative thresholding algorithm consistently performs the best under different conditions with ground truth matrix being multivariate Gaussian at varying covariance. For problems with unknown rank, TS1 algorithms with an additional rank estimation procedure approach the level of IRucL-q which is an iterative reweighted algorithm, non-convex in nature and best in performance

    Group-based Sparse Representation for Image Compressive Sensing Reconstruction with Non-Convex Regularization

    Full text link
    Patch-based sparse representation modeling has shown great potential in image compressive sensing (CS) reconstruction. However, this model usually suffers from some limits, such as dictionary learning with great computational complexity, neglecting the relationship among similar patches. In this paper, a group-based sparse representation method with non-convex regularization (GSR-NCR) for image CS reconstruction is proposed. In GSR-NCR, the local sparsity and nonlocal self-similarity of images is simultaneously considered in a unified framework. Different from the previous methods based on sparsity-promoting convex regularization, we extend the non-convex weighted Lp (0 < p < 1) penalty function on group sparse coefficients of the data matrix, rather than conventional L1-based regularization. To reduce the computational complexity, instead of learning the dictionary with a high computational complexity from natural images, we learn the principle component analysis (PCA) based dictionary for each group. Moreover, to make the proposed scheme tractable and robust, we have developed an efficient iterative shrinkage/thresholding algorithm to solve the non-convex optimization problem. Experimental results demonstrate that the proposed method outperforms many state-of-the-art techniques for image CS reconstruction

    A survey of sparse representation: algorithms and applications

    Full text link
    Sparse representation has attracted much attention from researchers in fields of signal processing, image processing, computer vision and pattern recognition. Sparse representation also has a good reputation in both theoretical research and practical applications. Many different algorithms have been proposed for sparse representation. The main purpose of this article is to provide a comprehensive study and an updated review on sparse representation and to supply a guidance for researchers. The taxonomy of sparse representation methods can be studied from various viewpoints. For example, in terms of different norm minimizations used in sparsity constraints, the methods can be roughly categorized into five groups: sparse representation with l0l_0-norm minimization, sparse representation with lpl_p-norm (0<<p<<1) minimization, sparse representation with l1l_1-norm minimization and sparse representation with l2,1l_{2,1}-norm minimization. In this paper, a comprehensive overview of sparse representation is provided. The available sparse representation algorithms can also be empirically categorized into four groups: greedy strategy approximation, constrained optimization, proximity algorithm-based optimization, and homotopy algorithm-based sparse representation. The rationales of different algorithms in each category are analyzed and a wide range of sparse representation applications are summarized, which could sufficiently reveal the potential nature of the sparse representation theory. Specifically, an experimentally comparative study of these sparse representation algorithms was presented. The Matlab code used in this paper can be available at: http://www.yongxu.org/lunwen.html.Comment: Published on IEEE Access, Vol. 3, pp. 490-530, 201

    Sparse Signal Estimation by Maximally Sparse Convex Optimization

    Full text link
    This paper addresses the problem of sparsity penalized least squares for applications in sparse signal processing, e.g. sparse deconvolution. This paper aims to induce sparsity more strongly than L1 norm regularization, while avoiding non-convex optimization. For this purpose, this paper describes the design and use of non-convex penalty functions (regularizers) constrained so as to ensure the convexity of the total cost function, F, to be minimized. The method is based on parametric penalty functions, the parameters of which are constrained to ensure convexity of F. It is shown that optimal parameters can be obtained by semidefinite programming (SDP). This maximally sparse convex (MSC) approach yields maximally non-convex sparsity-inducing penalty functions constrained such that the total cost function, F, is convex. It is demonstrated that iterative MSC (IMSC) can yield solutions substantially more sparse than the standard convex sparsity-inducing approach, i.e., L1 norm minimization.Comment: 13 pages, 9 figure

    Robust Matrix Completion via Maximum Correntropy Criterion and Half Quadratic Optimization

    Full text link
    Robust matrix completion aims to recover a low-rank matrix from a subset of noisy entries perturbed by complex noises, where traditional methods for matrix completion may perform poorly due to utilizing l2l_2 error norm in optimization. In this paper, we propose a novel and fast robust matrix completion method based on maximum correntropy criterion (MCC). The correntropy based error measure is utilized instead of using l2l_2-based error norm to improve the robustness to noises. Using the half-quadratic optimization technique, the correntropy based optimization can be transformed to a weighted matrix factorization problem. Then, two efficient algorithms are derived, including alternating minimization based algorithm and alternating gradient descend based algorithm. The proposed algorithms do not need to calculate singular value decomposition (SVD) at each iteration. Further, the adaptive kernel selection strategy is proposed to accelerate the convergence speed as well as improve the performance. Comparison with existing robust matrix completion algorithms is provided by simulations, showing that the new methods can achieve better performance than existing state-of-the-art algorithms

    A general framework for solving convex optimization problems involving the sum of three convex functions

    Full text link
    In this paper, we consider solving a class of convex optimization problem which minimizes the sum of three convex functions f(x)+g(x)+h(Bx)f(x)+g(x)+h(Bx), where f(x)f(x) is differentiable with a Lipschitz continuous gradient, g(x)g(x) and h(x)h(x) have a closed-form expression of their proximity operators and BB is a bounded linear operator. This type of optimization problem has wide application in signal recovery and image processing. To make full use of the differentiability function in the optimization problem, we take advantage of two operator splitting methods: the forward-backward splitting method and the three operator splitting method. In the iteration scheme derived from the two operator splitting methods, we need to compute the proximity operator of g+h∘Bg+h \circ B and h∘Bh \circ B, respectively. Although these proximity operators do not have a closed-form solution in general, they can be solved very efficiently. We mainly employ two different approaches to solve these proximity operators: one is dual and the other is primal-dual. Following this way, we fortunately find that three existing iterative algorithms including Condat and Vu algorithm, primal-dual fixed point (PDFP) algorithm and primal-dual three operator (PD3O) algorithm are a special case of our proposed iterative algorithms. Moreover, we discover a new kind of iterative algorithm to solve the considered optimization problem, which is not covered by the existing ones. Under mild conditions, we prove the convergence of the proposed iterative algorithms. Numerical experiments applied on fused Lasso problem, constrained total variation regularization in computed tomography (CT) image reconstruction and low-rank total variation image super-resolution problem demonstrate the effectiveness and efficiency of the proposed iterative algorithms.Comment: 37 pages, 10 figure

    Minimum nn-Rank Approximation via Iterative Hard Thresholding

    Full text link
    The problem of recovering a low nn-rank tensor is an extension of sparse recovery problem from the low dimensional space (matrix space) to the high dimensional space (tensor space) and has many applications in computer vision and graphics such as image inpainting and video inpainting. In this paper, we consider a new tensor recovery model, named as minimum nn-rank approximation (MnRA), and propose an appropriate iterative hard thresholding algorithm with giving the upper bound of the nn-rank in advance. The convergence analysis of the proposed algorithm is also presented. Particularly, we show that for the noiseless case, the linear convergence with rate 12\frac{1}{2} can be obtained for the proposed algorithm under proper conditions. Additionally, combining an effective heuristic for determining nn-rank, we can also apply the proposed algorithm to solve MnRA when nn-rank is unknown in advance. Some preliminary numerical results on randomly generated and real low nn-rank tensor completion problems are reported, which show the efficiency of the proposed algorithms.Comment: Iterative hard thresholding; low-nn-rank tensor recovery; tensor completion; compressed sensin
    • …
    corecore