13,642 research outputs found

    An efficient indexing scheme for multi-dimensional moving objects

    Get PDF
    We consider the problem of indexing a set of objects moving in d-dimensional space along linear trajectories. A simple disk-based indexing scheme is proposed to efficiently answer queries of the form: report all objects that will pass between two given points within a specified time interval. Our scheme is based on mapping the objects to a dual space, where queries about moving objects translate into polyhedral queries concerning their speeds and initial locations. We then present a simple method for answering such polyhedral queries, based on partitioning the space into disjoint regions and using a B-tree to index the points in each region. By appropriately selecting the boundaries of each region, we can guarantee an average search time that almost matches a known lower bound for the problem. Specifically, for a fixed d, if the coordinates of a given set of N points are statistically independent, the proposed technique answers polyhedral queries, on the average, in O((N/B)1-1/d.(logB N)1/d + K/B) I/O\u27s using O(N/B) space, where B is the block size, and K is the number of reported points. Our approach is novel in that, while it provides a theoretical upper bound on the average query time, it avoids the use of complicated data structures, making it an effective candidate for practical applications. © Springer-Verlag Berlin Heidelberg 2003

    Towards a Scalable Dynamic Spatial Database System

    Get PDF
    With the rise of GPS-enabled smartphones and other similar mobile devices, massive amounts of location data are available. However, no scalable solutions for soft real-time spatial queries on large sets of moving objects have yet emerged. In this paper we explore and measure the limits of actual algorithms and implementations regarding different application scenarios. And finally we propose a novel distributed architecture to solve the scalability issues.Comment: (2012

    Streaming Similarity Self-Join

    Full text link
    We introduce and study the problem of computing the similarity self-join in a streaming context (SSSJ), where the input is an unbounded stream of items arriving continuously. The goal is to find all pairs of items in the stream whose similarity is greater than a given threshold. The simplest formulation of the problem requires unbounded memory, and thus, it is intractable. To make the problem feasible, we introduce the notion of time-dependent similarity: the similarity of two items decreases with the difference in their arrival time. By leveraging the properties of this time-dependent similarity function, we design two algorithmic frameworks to solve the sssj problem. The first one, MiniBatch (MB), uses existing index-based filtering techniques for the static version of the problem, and combines them in a pipeline. The second framework, Streaming (STR), adds time filtering to the existing indexes, and integrates new time-based bounds deeply in the working of the algorithms. We also introduce a new indexing technique (L2), which is based on an existing state-of-the-art indexing technique (L2AP), but is optimized for the streaming case. Extensive experiments show that the STR algorithm, when instantiated with the L2 index, is the most scalable option across a wide array of datasets and parameters

    Advance of the Access Methods

    Get PDF
    The goal of this paper is to outline the advance of the access methods in the last ten years as well as to make review of all available in the accessible bibliography methods

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table
    corecore