880 research outputs found

    Highly Parallel Geometric Characterization and Visualization of Volumetric Data Sets

    Get PDF
    Volumetric 3D data sets are being generated in many different application areas. Some examples are CAT scans and MRI data, 3D models of protein molecules represented by implicit surfaces, multi-dimensional numeric simulations of plasma turbulence, and stacks of confocal microscopy images of cells. The size of these data sets has been increasing, requiring the speed of analysis and visualization techniques to also increase to keep up. Recent advances in processor technology have stopped increasing clock speed and instead begun increasing parallelism, resulting in multi-core CPUS and many-core GPUs. To take advantage of these new parallel architectures, algorithms must be explicitly written to exploit parallelism. In this thesis we describe several algorithms and techniques for volumetric data set analysis and visualization that are amenable to these modern parallel architectures. We first discuss modeling volumetric data with Gaussian Radial Basis Functions (RBFs). RBF representation of a data set has several advantages, including lossy compression, analytic differentiability, and analytic application of Gaussian blur. We also describe a parallel volume rendering algorithm that can create images of the data directly from the RBF representation. Next we discuss a parallel, stochastic algorithm for measuring the surface area of volumetric representations of molecules. The algorithm is suitable for implementation on a GPU and is also progressive, allowing it to return a rough answer almost immediately and refine the answer over time to the desired level of accuracy. After this we discuss the concept of Confluent Visualization, which allows the visualization of the interaction between a pair of volumetric data sets. The interaction is visualized through volume rendering, which is well suited to implementation on parallel architectures. Finally we discuss a parallel, stochastic algorithm for classifying stem cells as having been grown on a surface that induces differentiation or on a surface that does not induce differentiation. The algorithm takes as input 3D volumetric models of the cells generated from confocal microscopy. This algorithm builds on our algorithm for surface area measurement and, like that algorithm, this algorithm is also suitable for implementation on a GPU and is progressive

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Geometrically Enriched Latent Spaces

    Full text link
    A common assumption in generative models is that the generator immerses the latent space into a Euclidean ambient space. Instead, we consider the ambient space to be a Riemannian manifold, which allows for encoding domain knowledge through the associated Riemannian metric. Shortest paths can then be defined accordingly in the latent space to both follow the learned manifold and respect the ambient geometry. Through careful design of the ambient metric we can ensure that shortest paths are well-behaved even for deterministic generators that otherwise would exhibit a misleading bias. Experimentally we show that our approach improves interpretability of learned representations both using stochastic and deterministic generators

    A geometric comparison of aerofoil shape parameterisation methods

    Get PDF
    corecore