7,394 research outputs found

    The Case for Learned Index Structures

    Full text link
    Indexes are models: a B-Tree-Index can be seen as a model to map a key to the position of a record within a sorted array, a Hash-Index as a model to map a key to a position of a record within an unsorted array, and a BitMap-Index as a model to indicate if a data record exists or not. In this exploratory research paper, we start from this premise and posit that all existing index structures can be replaced with other types of models, including deep-learning models, which we term learned indexes. The key idea is that a model can learn the sort order or structure of lookup keys and use this signal to effectively predict the position or existence of records. We theoretically analyze under which conditions learned indexes outperform traditional index structures and describe the main challenges in designing learned index structures. Our initial results show, that by using neural nets we are able to outperform cache-optimized B-Trees by up to 70% in speed while saving an order-of-magnitude in memory over several real-world data sets. More importantly though, we believe that the idea of replacing core components of a data management system through learned models has far reaching implications for future systems designs and that this work just provides a glimpse of what might be possible

    Dynamic Graphs on the GPU

    Get PDF
    We present a fast dynamic graph data structure for the GPU. Our dynamic graph structure uses one hash table per vertex to store adjacency lists and achieves 3.4–14.8x faster insertion rates over the state of the art across a diverse set of large datasets, as well as deletion speedups up to 7.8x. The data structure supports queries and dynamic updates through both edge and vertex insertion and deletion. In addition, we define a comprehensive evaluation strategy based on operations, workloads, and applications that we believe better characterize and evaluate dynamic graph data structures

    Code Generation for Efficient Query Processing in Managed Runtimes

    Get PDF
    In this paper we examine opportunities arising from the conver-gence of two trends in data management: in-memory database sys-tems (IMDBs), which have received renewed attention following the availability of affordable, very large main memory systems; and language-integrated query, which transparently integrates database queries with programming languages (thus addressing the famous ‘impedance mismatch ’ problem). Language-integrated query not only gives application developers a more convenient way to query external data sources like IMDBs, but also to use the same querying language to query an application’s in-memory collections. The lat-ter offers further transparency to developers as the query language and all data is represented in the data model of the host program-ming language. However, compared to IMDBs, this additional free-dom comes at a higher cost for query evaluation. Our vision is to improve in-memory query processing of application objects by introducing database technologies to managed runtimes. We focus on querying and we leverage query compilation to im-prove query processing on application objects. We explore dif-ferent query compilation strategies and study how they improve the performance of query processing over application data. We take C] as the host programming language as it supports language-integrated query through the LINQ framework. Our techniques de-liver significant performance improvements over the default LINQ implementation. Our work makes important first steps towards a future where data processing applications will commonly run on machines that can store their entire datasets in-memory, and will be written in a single programming language employing language-integrated query and IMDB-inspired runtimes to provide transparent and highly efficient querying. 1
    corecore