4,613 research outputs found

    Iterated LD-Problem in non-associative key establishment

    Full text link
    We construct new non-associative key establishment protocols for all left self-distributive (LD), multi-LD-, and mutual LD-systems. The hardness of these protocols relies on variations of the (simultaneous) iterated LD-problem and its generalizations. We discuss instantiations of these protocols using generalized shifted conjugacy in braid groups and their quotients, LD-conjugacy and ff-symmetric conjugacy in groups. We suggest parameter choices for instantiations in braid groups, symmetric groups and several matrix groups.Comment: 30 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:1305.440

    Group theory in cryptography

    Full text link
    This paper is a guide for the pure mathematician who would like to know more about cryptography based on group theory. The paper gives a brief overview of the subject, and provides pointers to good textbooks, key research papers and recent survey papers in the area.Comment: 25 pages References updated, and a few extra references added. Minor typographical changes. To appear in Proceedings of Groups St Andrews 2009 in Bath, U

    Conjugacy in Garside Groups III: Periodic braids

    Get PDF
    An element in Artin's braid group B_n is said to be periodic if some power of it lies in the center of B_n. In this paper we prove that all previously known algorithms for solving the conjugacy search problem in B_n are exponential in the braid index n for the special case of periodic braids. We overcome this difficulty by putting to work several known isomorphisms between Garside structures in the braid group B_n and other Garside groups. This allows us to obtain a polynomial solution to the original problem in the spirit of the previously known algorithms. This paper is the third in a series of papers by the same authors about the conjugacy problem in Garside groups. They have a unified goal: the development of a polynomial algorithm for the conjugacy decision and search problems in B_n, which generalizes to other Garside groups whenever possible. It is our hope that the methods introduced here will allow the generalization of the results in this paper to all Artin-Tits groups of spherical type.Comment: 33 pages, 13 figures. Classical references implying Corollaries 12 and 15 have been added. To appear in Journal of Algebr

    Combinatorial group theory and public key cryptography

    Full text link
    After some excitement generated by recently suggested public key exchange protocols due to Anshel-Anshel-Goldfeld and Ko-Lee et al., it is a prevalent opinion now that the conjugacy search problem is unlikely to provide sufficient level of security if a braid group is used as the platform. In this paper we address the following questions: (1) whether choosing a different group, or a class of groups, can remedy the situation; (2) whether some other "hard" problem from combinatorial group theory can be used, instead of the conjugacy search problem, in a public key exchange protocol. Another question that we address here, although somewhat vague, is likely to become a focus of the future research in public key cryptography based on symbolic computation: (3) whether one can efficiently disguise an element of a given group (or a semigroup) by using defining relations.Comment: 12 page

    A New Algorithm for Solving the Word Problem in Braid Groups

    Get PDF
    One of the most interesting questions about a group is if its word problem can be solved and how. The word problem in the braid group is of particular interest to topologists, algebraists and geometers, and is the target of intensive current research. We look at the braid group from a topological point of view (rather than a geometrical one). The braid group is defined by the action of diffeomorphisms on the fundamental group of a punctured disk. We exploit the topological definition of the braid group in order to give a new approach for solving its word problem. Our algorithm is faster, in comparison with known algorithms, for short braid words with respect to the number of generators combining the braid, and it is almost independent of the number of strings in the braids. Moreover, the algorithm is based on a new computer presentation of the elements of the fundamental group of a punctured disk. This presentation can be used also for other algorithms.Comment: 24 pages, 13 figure

    Quantum Knitting

    Get PDF
    We analyze the connections between the mathematical theory of knots and quantum physics by addressing a number of algorithmic questions related to both knots and braid groups. Knots can be distinguished by means of `knot invariants', among which the Jones polynomial plays a prominent role, since it can be associated with observables in topological quantum field theory. Although the problem of computing the Jones polynomial is intractable in the framework of classical complexity theory, it has been recently recognized that a quantum computer is capable of approximating it in an efficient way. The quantum algorithms discussed here represent a breakthrough for quantum computation, since approximating the Jones polynomial is actually a `universal problem', namely the hardest problem that a quantum computer can efficiently handle.Comment: 29 pages, 5 figures; to appear in Laser Journa

    Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures

    Full text link
    Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computation. We present the first detailed designs of hardware functional units that implement space-time optimized magic-state factories for surface code error-corrected machines. Interactions among distant qubits require surface code braids (physical pathways on chip) which must be routed. Magic-state factories are circuits comprised of a complex set of braids that is more difficult to route than quantum circuits considered in previous work [1]. This paper explores the impact of scheduling techniques, such as gate reordering and qubit renaming, and we propose two novel mapping techniques: braid repulsion and dipole moment braid rotation. We combine these techniques with graph partitioning and community detection algorithms, and further introduce a stitching algorithm for mapping subgraphs onto a physical machine. Our results show a factor of 5.64 reduction in space-time volume compared to the best-known previous designs for magic-state factories.Comment: 13 pages, 10 figure

    Experimental approximation of the Jones polynomial with DQC1

    Full text link
    We present experimental results approximating the Jones polynomial using 4 qubits in a liquid state nuclear magnetic resonance quantum information processor. This is the first experimental implementation of a complete problem for the deterministic quantum computation with one quantum bit model of quantum computation, which uses a single qubit accompanied by a register of completely random states. The Jones polynomial is a knot invariant that is important not only to knot theory, but also to statistical mechanics and quantum field theory. The implemented algorithm is a modification of the algorithm developed by Shor and Jordan suitable for implementation in NMR. These experimental results show that for the restricted case of knots whose braid representations have four strands and exactly three crossings, identifying distinct knots is possible 91% of the time.Comment: 5 figures. Version 2 changes: published version, minor errors corrected, slight changes to improve readabilit
    corecore