202 research outputs found

    Un método Wavelet-Galerkin para ecuaciones diferenciales parciales parabólicas

    Get PDF
    In this paper an Adaptive Wavelet-Galerkin method for the solution ofparabolic partial differential equations modeling physical problems withdifferent spatial and temporal scales is developed. A semi-implicit timedifference scheme is applied andB-spline multiresolution structure on theinterval is used. As in many cases these solutions are known to presentlocalized sharp gradients, local error estimators are designed and an ef-ficient adaptive strategy to choose the appropriate scale for each time isdeveloped. Finally, experiments were performed to illustrate the applica-bility and efficiency of the proposed method.En este trabajo se desarrolla un método Wavelet-Galerkin Adaptativopara la resolución de ecuaciones diferenciales parabólicas que modelanproblemas físicos, con diferentes escalas en el espacio y en el tiempo. Seutiliza un esquema semi-implícito en diferencias temporales y la estructuramultirresolución de las B-splines sobre intervalo.Como es sabido que enmuchos casos las soluciones presentan gradientes localmente altos, se handiseñado estimadores locales de error y una estrategia adaptativa eficientepara elegir la escala apropiada en cada tiempo. Finalmente, se realizaronexperimentos que ilustran la aplicabilidad y la eficiencia del método pro-puestoFil: Vampa, Victoria Cristina. Universidad Nacional de La Plata. Facultad de Ingeniería; ArgentinaFil: Martín, María Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentin

    The Investigation of Efficiency of Physical Phenomena Modelling Using Differential Equations on Distributed Systems

    Get PDF
    This work is dedicated to development of mathematical modelling software. In this dissertation numerical methods and algorithms are investigated in software making context. While applying a numerical method it is important to take into account the limited computer resources, the architecture of these resources and how do methods affect software robustness. Three main aspects of this investigation are that software implementation must be efficient, robust and be able to utilize specific hardware resources. The hardware specificity in this work is related to distributed computations of different types: single CPU with multiple cores, multiple CPUs with multiple cores and highly parallel multithreaded GPU device. The investigation is done in three directions: GPU usage for 3D FDTD calculations, FVM method usage to implement efficient calculations of a very specific heat transferring problem, and development of special techniques for software for specific bacteria self organization problem when the results are sensitive to numerical methods, initial data and even computer round-off errors. All these directions are dedicated to create correct technological components that make a software implementation robust and efficient. The time prediction model for 3D FDTD calculations is proposed, which lets to evaluate the efficiency of different GPUs. A reasonable speedup with GPU comparing to CPU is obtained. For FVM implementation the OpenFOAM open source software is selected as a basis for implementation of calculations and a few algorithms and their modifications to solve efficiency issues are proposed. The FVM parallel solver is implemented and analyzed, it is adapted to heterogeneous cluster Vilkas. To create robust software for simulation of bacteria self organization mathematically robust methods are applied and results are analyzed, the algorithm is modified for parallel computations

    Computational Engineering

    Get PDF
    The focus of this Computational Engineering Workshop was on the mathematical foundation of state-of-the-art and emerging finite element methods in engineering analysis. The 52 participants included mathematicians and engineers with shared interest on discontinuous Galerkin or Petrov-Galerkin methods and other generalized nonconforming or mixed finite element methods

    On Discontinuous Galerkin Methods for Singularly Perturbed and Incompressible Miscible Displacement Problems

    Get PDF
    This thesis is concerned with the numerical approximation of problems of fluid flow, in particular the stationary advection diffusion reaction equations and the time dependent, coupled equations of incompressible miscible displacement in a porous medium. We begin by introducing the continuous discontinuous Galerkin method for the singularly perturbed advection diffusion reaction problem. This is a method which coincides with the continuous Galerkin method away from internal and boundary layers and with a discontinuous Galerkin method in the vicinity of layers. We prove that this consistent method is stable in the streamline diffusion norm if the convection field flows non-characteristically from the region of the continuous Galerkin to the region of the discontinuous Galerkin method. We then turn our attention to the equations of incompressible miscible displacement for the concentration, pressure and velocity of one fluid in a porous medium being displaced by another. We show a reliable a posteriori error estimator for the time dependent, coupled equations in the case where the solution has sufficient regularity and the velocity is bounded. We remark that these conditions may not be attained in physically realistic geometries. We therefore present an abstract approach to the stationary problem of miscible displacement and investigate an a posteriori error estimator using weighted spaces that relies on lower regularity requirements for the true solution. We then return to the continuous discontinuous Galerkin method. We prove in an abstract setting that standard (continuous) Galerkin finite element approximations are the limit of interior penalty discontinuous Galerkin approximations as the penalty parameter tends to infinity. We then show that by varying the penalization parameter on only a subset of the domain we reach the continuous discontinuous method in the limit. We present numerical experiments illustrating this approach both for equations of non-negative characteristic form (closely related to advection diffusion reaction equations) and to the problem of incompressible miscible displacement. We show that we may practically determine appropriate discontinuous and continuous regions, resulting in a significant reduction of the number of degrees of freedom required to approximate a solution, by using the properties of the discontinuous Galerkin approximation to the advection diffusion reaction equation. We finally present novel code for implementing the continuous discontinuous Galerkin method in C++

    Proceedings for the ICASE Workshop on Heterogeneous Boundary Conditions

    Get PDF
    Domain Decomposition is a complex problem with many interesting aspects. The choice of decomposition can be made based on many different criteria, and the choice of interface of internal boundary conditions are numerous. The various regions under study may have different dynamical balances, indicating that different physical processes are dominating the flow in these regions. This conference was called in recognition of the need to more clearly define the nature of these complex problems. This proceedings is a collection of the presentations and the discussion groups

    Cumulative reports and publications through December 31, 1990

    Get PDF
    This document contains a complete list of ICASE reports. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available

    Double Greedy Algorithms: Reduced Basis Methods for Transport Dominated Problems

    Get PDF
    The central objective of this paper is to develop reduced basis methods for parameter dependent transport dominated problems that are rigorously proven to exhibit rate-optimal performance when compared with the Kolmogorov nn-widths of the solution sets. The central ingredient is the construction of computationally feasible "tight" surrogates which in turn are based on deriving a suitable well-conditioned variational formulation for the parameter dependent problem. The theoretical results are illustrated by numerical experiments for convection-diffusion and pure transport equations. In particular, the latter example sheds some light on the smoothness of the dependence of the solutions on the parameters
    corecore