205 research outputs found

    Audio-Visual Automatic Speech Recognition Using PZM, MFCC and Statistical Analysis

    Get PDF
    Audio-Visual Automatic Speech Recognition (AV-ASR) has become the most promising research area when the audio signal gets corrupted by noise. The main objective of this paper is to select the important and discriminative audio and visual speech features to recognize audio-visual speech. This paper proposes Pseudo Zernike Moment (PZM) and feature selection method for audio-visual speech recognition. Visual information is captured from the lip contour and computes the moments for lip reading. We have extracted 19th order of Mel Frequency Cepstral Coefficients (MFCC) as speech features from audio. Since all the 19 speech features are not equally important, therefore, feature selection algorithms are used to select the most efficient features. The various statistical algorithm such as Analysis of Variance (ANOVA), Kruskal-wallis, and Friedman test are employed to analyze the significance of features along with Incremental Feature Selection (IFS) technique. Statistical analysis is used to analyze the statistical significance of the speech features and after that IFS is used to select the speech feature subset. Furthermore, multiclass Support Vector Machine (SVM), Artificial Neural Network (ANN) and Naive Bayes (NB) machine learning techniques are used to recognize the speech for both the audio and visual modalities. Based on the recognition rate combined decision is taken from the two individual recognition systems. This paper compares the result achieved by the proposed model and the existing model for both audio and visual speech recognition. Zernike Moment (ZM) is compared with PZM and shows that our proposed model using PZM extracts better discriminative features for visual speech recognition. This study also proves that audio feature selection using statistical analysis outperforms methods without any feature selection technique

    Local And Semi-Global Feature-Correlative Techniques For Face Recognition

    Get PDF
    Face recognition is an interesting field of computer vision with many commercial and scientific applications. It is considered as a very hot topic and challenging problem at the moment. Many methods and techniques have been proposed and applied for this purpose, such as neural networks, PCA, Gabor filtering, etc. Each approach has its weaknesses as well as its points of strength. This paper introduces a highly efficient method for the recognition of human faces in digital images using a new feature extraction method that combines the global and local information in different views (poses) of facial images. Feature extraction techniques are applied on the images (faces) based on Zernike moments and structural similarity measure (SSIM) with local and semi-global blocks. Pre-processing is carried out whenever needed, and numbers of measurements are derived. More specifically, instead of the usual approach for applying statistics or structural methods only, the proposed methodology integrates higher-order representation patterns extracted by Zernike moments with a modified version of SSIM (M-SSIM). Individual measurements and metrics resulted from mixed SSIM and Zernike-based approaches give a powerful recognition tool with great results. Experiments reveal that correlative Zernike vectors give a better discriminant compared with using 2D correlation of the image itself. The recognition rate using ORL Database of Faces reaches 98.75%, while using FEI (Brazilian) Face Database we got 96.57%. The proposed approach is robust against rotation and noise

    Human Face Recognition

    Get PDF
    Face recognition, as the main biometric used by human beings, has become more popular for the last twenty years. Automatic recognition of human faces has many commercial and security applications in identity validation and recognition and has become one of the hottest topics in the area of image processing and pattern recognition since 1990. Availability of feasible technologies as well as the increasing request for reliable security systems in today’s world has been a motivation for many researchers to develop new methods for face recognition. In automatic face recognition we desire to either identify or verify one or more persons in still or video images of a scene by means of a stored database of faces. One of the important features of face recognition is its non-intrusive and non-contact property that distinguishes it from other biometrics like iris or finger print recognition that require subjects’ participation. During the last two decades several face recognition algorithms and systems have been proposed and some major advances have been achieved. As a result, the performance of face recognition systems under controlled conditions has now reached a satisfactory level. These systems, however, face some challenges in environments with variations in illumination, pose, expression, etc. The objective of this research is designing a reliable automated face recognition system which is robust under varying conditions of noise level, illumination and occlusion. A new method for illumination invariant feature extraction based on the illumination-reflectance model is proposed which is computationally efficient and does not require any prior information about the face model or illumination. A weighted voting scheme is also proposed to enhance the performance under illumination variations and also cancel occlusions. The proposed method uses mutual information and entropy of the images to generate different weights for a group of ensemble classifiers based on the input image quality. The method yields outstanding results by reducing the effect of both illumination and occlusion variations in the input face images

    Face Recognition Using Neural Networks

    Get PDF
    Face recognition from the images is challenging due to the wide variability of face appearances and the complexity of the image background. This paper proposes a novel approach for recognizing the human faces. The recognition is done by comparing the characteristics of the new face to that of known individuals. It has Face localization part, where mouth end point and eyeballs will be obtained. In feature Extraction, Distance between eyeballs and mouth end point will be calculated. The recognition is performed by Neural Network (NN) using Back Propagation Networks (BPN) and Radial Basis Function (RBF) networks. The recognition performance of the proposed method is tabulated based on the experiments performed on a number of images

    The Optimisation of Elementary and Integrative Content-Based Image Retrieval Techniques

    Get PDF
    Image retrieval plays a major role in many image processing applications. However, a number of factors (e.g. rotation, non-uniform illumination, noise and lack of spatial information) can disrupt the outputs of image retrieval systems such that they cannot produce the desired results. In recent years, many researchers have introduced different approaches to overcome this problem. Colour-based CBIR (content-based image retrieval) and shape-based CBIR were the most commonly used techniques for obtaining image signatures. Although the colour histogram and shape descriptor have produced satisfactory results for certain applications, they still suffer many theoretical and practical problems. A prominent one among them is the well-known “curse of dimensionality “. In this research, a new Fuzzy Fusion-based Colour and Shape Signature (FFCSS) approach for integrating colour-only and shape-only features has been investigated to produce an effective image feature vector for database retrieval. The proposed technique is based on an optimised fuzzy colour scheme and robust shape descriptors. Experimental tests were carried out to check the behaviour of the FFCSS-based system, including sensitivity and robustness of the proposed signature of the sampled images, especially under varied conditions of, rotation, scaling, noise and light intensity. To further improve retrieval efficiency of the devised signature model, the target image repositories were clustered into several groups using the k-means clustering algorithm at system runtime, where the search begins at the centres of each cluster. The FFCSS-based approach has proven superior to other benchmarked classic CBIR methods, hence this research makes a substantial contribution towards corresponding theoretical and practical fronts

    Feature Extraction Methods for Character Recognition

    Get PDF
    Not Include

    Face Recognition Using Fuzzy Moments Discriminant Analysis

    Get PDF
    In this work, an enhanced feature extraction method for holistic face recognition approach of gray intensity still image, namely Fuzzy Moment Discriminant Analysis is used. Which is first, based on Pseudo-Zernike Moments to extract dominant and significant features for each image of enrolled person, then the dimensionality of the moments features vectors is further reduced into discriminant moment features vectors using Linear Discriminant Analysis method, for these vectors the membership degrees in each class have been computed using Fuzzy K-Nearest Neighbor, after that, the membership degrees have been incorporated into the redefinition of the between-classes and within-classes scatter matrices to obtain final features vectors of  known persons. The test image is then compared with the faces enrollment images so that the face which has the minimum Euclidean distance with the test image is labeled with the identity of that image. Keyword: Zernike Moments, LDA, Fuzzy K-Nearest Neighbor

    Various Approaches of Support vector Machines and combined Classifiers in Face Recognition

    Get PDF
    In this paper we present the various approaches used in face recognition from 2001-2012.because in last decade face recognition is using in many fields like Security sectors, identity authentication. Today we need correct and speedy performance in face recognition. This time the face recognition technology is in matured stage because research is conducting continuously in this field. Some extensions of Support vector machine (SVM) is reviewed that gives amazing performance in face recognition.Here we also review some papers of combined classifier approaches that is also a dynamic research area in a pattern recognition
    • …
    corecore