195 research outputs found

    Multiscale Transforms for Signals on Simplicial Complexes

    Full text link
    Our previous multiscale graph basis dictionaries/graph signal transforms -- Generalized Haar-Walsh Transform (GHWT); Hierarchical Graph Laplacian Eigen Transform (HGLET); Natural Graph Wavelet Packets (NGWPs); and their relatives -- were developed for analyzing data recorded on nodes of a given graph. In this article, we propose their generalization for analyzing data recorded on edges, faces (i.e., triangles), or more generally κ\kappa-dimensional simplices of a simplicial complex (e.g., a triangle mesh of a manifold). The key idea is to use the Hodge Laplacians and their variants for hierarchical partitioning of a set of κ\kappa-dimensional simplices in a given simplicial complex, and then build localized basis functions on these partitioned subsets. We demonstrate their usefulness for data representation on both illustrative synthetic examples and real-world simplicial complexes generated from a co-authorship/citation dataset and an ocean current/flow dataset.Comment: 19 Pages, Comments welcom

    Probing the anomalous dynamical phase in long-range quantum spin chains through Fisher-zero lines

    Full text link
    Using the framework of infinite Matrix Product States, the existence of an \textit{anomalous} dynamical phase for the transverse-field Ising chain with sufficiently long-range interactions was first reported in [J.~C.~Halimeh and V.~Zauner-Stauber, arXiv:1610:02019], where it was shown that \textit{anomalous} cusps arise in the Loschmidt-echo return rate for sufficiently small quenches within the ferromagnetic phase. In this work we further probe the nature of the anomalous phase through calculating the corresponding Fisher-zero lines in the complex time plane. We find that these Fisher-zero lines exhibit a qualitative difference in their behavior, where, unlike in the case of the regular phase, some of them terminate before intersecting the imaginary axis, indicating the existence of smooth peaks in the return rate preceding the cusps. Additionally, we discuss in detail the infinite Matrix Product State time-evolution method used to calculate Fisher zeros and the Loschmidt-echo return rate using the Matrix Product State transfer matrix. Our work sheds further light on the nature of the anomalous phase in the long-range transverse-field Ising chain, while the numerical treatment presented can be applied to more general quantum spin chains.Comment: Journal article. 9 pages and 6 figures. Includes in part what used to be supplemental material in arXiv:1610:0201

    Genuinely multipartite entangled states and orthogonal arrays

    Full text link
    A pure quantum state of N subsystems with d levels each is called k-multipartite maximally entangled state, written k-uniform, if all its reductions to k qudits are maximally mixed. These states form a natural generalization of N-qudits GHZ states which belong to the class 1-uniform states. We establish a link between the combinatorial notion of orthogonal arrays and k-uniform states and prove the existence of several new classes of such states for N-qudit systems. In particular, known Hadamard matrices allow us to explicitly construct 2-uniform states for an arbitrary number of N>5 qubits. We show that finding a different class of 2-uniform states would imply the Hadamard conjecture, so the full classification of 2-uniform states seems to be currently out of reach. Additionally, single vectors of another class of 2-uniform states are one-to-one related to maximal sets of mutually unbiased bases. Furthermore, we establish links between existence of k-uniform states, classical and quantum error correction codes and provide a novel graph representation for such states.Comment: 24 pages, 7 figures. Comments are very welcome

    Entanglement of formation of mixed many-body quantum states via Tree Tensor Operators

    Full text link
    We present a numerical strategy to efficiently estimate bipartite entanglement measures, and in particular the Entanglement of Formation, for many-body quantum systems on a lattice. Our approach exploits the Tree Tensor Operator tensor network ansatz, a positive loopless representation for density matrices which, as we demonstrate, efficiently encodes information on bipartite entanglement, enabling the up-scaling of entanglement estimation. Employing this technique, we observe a finite-size scaling law for the entanglement of formation in 1D critical lattice models at finite temperature for up to 128 spins, extending to mixed states the scaling law for the entanglement entropy
    corecore