38 research outputs found

    Enhanced SOAP Performance for low bandwidth environments

    Get PDF
    It is desirable that SOAP performs efficiently in environments where there are a large number of transactions. However, SOAP is based on XML and therefore inherits XML's disadvantage of having voluminous messages. Firstly, the performance of different SOAP bindings is investigated. A benchmark of different SOAP bindings in wireless environments demonstrates the unsuitability of HTTP and TCP bindings in limited bandwidth environments. UDP is recommended as an alternative transport protocol for SOAP. Secondly, the thesis examines the use of multicast in reducing the traffic caused by SOAP messages in low bandwidth environments to deal with challenges described. A novel SOAP-level multicast protocol based on the similarity of SOAP messages, called SMP (Similarity-based SOAP Multicast Protocol), is proposed. In particular, issues of traffic, network optimization, response time and scalability are investigated. Lastly, two extensions of SMP are proposed to further improve the performance of SMP. SMP's extensions are two algorithms, greedy and incremental tc-SMP, for traffic-constrained similarity-based SOAP multicast. Tc-SMP optimizes network traffic by building its own spanning trees instead of using the one built by traditional methods, such as Dijkstra's algorithm. A new client is added to a tc-SMP tree through an existing tc-SMP node that causes minimal additional traffic for that connection. Detailed analytical models and experimental evaluations of the proposed methods demonstrate that combining SOAP messages of similar content and multicasting them as aggregated messages can significantly lower total network traffic. These improvements are advantageous for Web service applications that involve a high number of simultaneous similar transactions such as stock quotes, weather and sport event reports

    Equal cost multipath routing in IP networks

    Get PDF
    IP verkkojen palveluntarjoajat ja loppukäyttäjät vaativat yhä tehokkaampia ja parempilaatuisia palveluita, mikä vaatii tuotekehittäjiä tarjoamaan hienostuneempia liikennesuunnittelumenetelmiä verkon optimointia ja hallintaa varten. IS-IS ja OSPF ovat standardiratkaisut hoitamaan reititystä pienissä ja keskisuurissa pakettiverkoissa. Monipolkureititys on melko helppo ja yleispätevä tapa parantaa kuorman balansointia ja nopeaa suojausta tällaisissa yhden polun reititykseen keskittyvissä verkoissa. Tämä diplomityö kirjoitettiin aikana, jolloin monipolkureititys toteutettiin Tellabs-nimisen yrityksen 8600-sarjan reitittimiin. Tärkeimpiä kohtia monipolkureitityksen käyttöönotossa ovat lyhyimmän polun algoritmin muokkaukseen ja reititystaulun toimintaan liittyvät muutokset ohjaustasolla sekä kuormanbalansointialgoritmin toteutus reitittimen edelleenkuljetustasolla. Diplomityön tulokset sekä olemassa oleva kirjallisuus osoittavat, että kuormanbalansointialgoritmilla on suurin vaikutus yhtä hyvien polkujen liikenteen jakautumiseen ja että oikean algoritmin valinta on ratkaisevan tärkeää. Hajakoodaukseen perustuvat algoritmit, jotka pitävät suurimman osan liikennevuoista samalla polulla, ovat dominoivia ratkaisuja nykyisin. Tämän algoritmityypin etuna on helppo toteutettavuus ja kohtuullisen hyvä suorituskyky. Liikenne on jakautunut tasaisesti, kunhan liikennevuoiden lukumäärä on riittävän suuri. Monipolkureititys tarjoaa yksinkertaisen ratkaisun, jota on helppo konfiguroida ja ylläpitää. Suorituskyky on parempi kuin yksipolkureititykseen perustuvat ratkaisut ja se haastaa monimutkaisemmat MPLS ratkaisut. Ainoa huolehdittava asia on linkkien painojen asettaminen sillä tavalla, että riittävästi kuormantasauspolkuja syntyy.Increasing efficiency and quality demands of services from IP network service providers and end users drive developers to offer more and more sophisticated traffic engineering methods for network optimization and control. Intermediate System to Intermediate System and Open Shortest Path First are the standard routing solutions for intra-domain networks. An easy upgrade utilizes Equal Cost Multipath (ECMP) that is one of the most general solutions for IP traffic engineering to increase load balancing and fast protection performance of single path interior gateway protocols. This thesis was written during the implementation process of the ECMP feature of Tellabs 8600 series routers. The most important parts in adoption of ECMP are changes to shortest path first algorithm and routing table modification in the control plane and implementation of load balancing algorithm to the forwarding plane of router. The results of the thesis and existing literature prove, that the load balancing algorithm has the largest affect on traffic distribution of equal cost paths and the selection of the correct algorithm is crucial. Hash-based algorithms, that keep the traffic flows in the same path, are the dominating solutions currently. They provide simple implementation and moderate performance. Traffic is distributed evenly, when the number of flows is large enough. ECMP provides a simple solution that is easy to configure and maintain. It outperforms single path solutions and competes with more complex MPLS solutions. The only thing to take care of is the adjustment of link weights of the network in order to create enough load balancing paths

    Review of Path Selection Algorithms with Link Quality and Critical Switch Aware for Heterogeneous Traffic in SDN

    Get PDF
    Software Defined Networking (SDN) introduced network management flexibility that eludes traditional network architecture. Nevertheless, the pervasive demand for various cloud computing services with different levels of Quality of Service requirements in our contemporary world made network service provisioning challenging. One of these challenges is path selection (PS) for routing heterogeneous traffic with end-to-end quality of service support specific to each traffic class. The challenge had gotten the research community\u27s attention to the extent that many PSAs were proposed. However, a gap still exists that calls for further study. This paper reviews the existing PSA and the Baseline Shortest Path Algorithms (BSPA) upon which many relevant PSA(s) are built to help identify these gaps. The paper categorizes the PSAs into four, based on their path selection criteria, (1) PSAs that use static or dynamic link quality to guide PSD, (2) PSAs that consider the criticality of switch in terms of an update operation, FlowTable limitation or port capacity to guide PSD, (3) PSAs that consider flow variabilities to guide PSD and (4) The PSAs that use ML optimization in their PSD. We then reviewed and compared the techniques\u27 design in each category against the identified SDN PSA design objectives, solution approach, BSPA, and validation approaches. Finally, the paper recommends directions for further research

    Multipath Cluster Based Routing Protocol For Non-Uniform Node Density Mobile Ad Hoc Networks

    Get PDF
    Rangkaian sementara bergerak (Mobile Ad Hoc Networks, MANET) merupakan suatu kumpulan nod bergerak yang boleh berkomunikasi bersama tanpa memerlukan sebarang infrastruktur tetap dan pengurusan terpusat. MANET begitu popular dalam keadaan ketiadaan lokasi infrastruktur komunikasi tetap, seperti tapak bencana alam atau medan perang. Ketumpatan nod bergerak yang berbeza daripada satu subkawasan dengan subkawasan yang lain didefinisikan sebagai ketumpatan nod tidak seragam. Komunikasi di antara nod dalam rangkaian ketumpatan nod tidak seragam berdepan dengan cabaran keterikatan yang rendah, yang memungkinkan nod lebih rentan atau suseptibel untuk terputus pautan. Keadaan tersebut akan memberi impak terhadap kualiti perkhidmatan (quality of service, QoS) dalam rangkaian. Secara tipikal, ketumpatan nod tidak seragam boleh mempengaruhi prestasi rangkaian.. Sebagai contoh, nisbah penghantaran paket dijangka tinggi dalam subrangkaian ketumpatan tinggi dan rendah dalam subrangkaian ketumpatan rendah. Tesis ini mncadangkan Kluster Berbilang Laluan berdasarkan Protokol Penghalaan (MPCBRP) untuk mengesan masalah keterkaitan yang rendah dalam rangkaian ketumpatan nod tidak seragam dan untuk menambah baik QoS bagi MANET. A mobile ad hoc network (MANET) is a group of mobile nodes that can communicate with one another without the need for a fixed infrastructure and centralized management. MANETs are popular in locations that lack a fixed communication infrastructure, such as in natural disaster sites and battlefields. The varying densities of mobile nodes from one sub-area to another are referred to as non-uniform node densities. The communication between nodes in a network with non-uniform density faces the challenge of low connectivity, in which nodes are susceptible to link breakages. Such condition affects the Quality of Service (QoS) in networks. Typically, a non-uniform node density influences network performance. For instance, packet delivery ratio is expected to be high in high-density sub networks and low in low-density sub networks. This thesis proposes a multipath cluster-based routing protocol (MP-CBRP) to address the problem of low connectivity in networks with non-uniform density and to improve the QoS for MANETs

    Management of Temporally and Spatially Correlated Failures in Federated Message Oriented Middleware for Resilient and QoS-Aware Messaging Services.

    Get PDF
    PhDMessage Oriented Middleware (MOM) is widely recognized as a promising solution for the communications between heterogeneous distributed systems. Because the resilience and quality-of-service of the messaging substrate plays a critical role in the overall system performance, the evolution of these distributed systems has introduced new requirements for MOM, such as inter domain federation, resilience and QoS support. This thesis focuses on a management frame work that enhances the Resilience and QoS-awareness of MOM, called RQMOM, for federated enterprise systems. A common hierarchical MOM architecture for the federated messaging service is assumed. Each bottom level local domain comprises a cluster of neighbouring brokers that carry a local messaging service, and inter domain messaging are routed through the gateway brokers of the different local domains over the top level federated overlay. Some challenges and solutions for the intra and inter domain messaging are researched. In local domain messaging the common cause of performance degradation is often the fluctuation of workloads which might result in surge of total workload on a broker and overload its processing capacity, since a local domain is often within a well connected network. Against performance degradation, a combination of novel proactive risk-aware workload allocation, which exploits the co-variation between workloads, in addition to existing reactive load balancing is designed and evaluated. In federated inter domain messaging an overlay network of federated gateway brokers distributed in separated geographical locations, on top of the heterogeneous physical network is considered. Geographical correlated failures are threats to cause major interruptions and damages to such systems. To mitigate this rarely addressed challenge, a novel geographical location aware route selection algorithm to support uninterrupted messaging is introduced. It is used with existing overlay routing mechanisms, to maintain routes and hence provide more resilient messaging against geographical correlated failures

    Towards larger scale collective operations in the Message Passing Interface

    Get PDF
    Supercomputers continue to expand both in size and complexity as we reach the beginning of the exascale era. Networks have evolved, from simple mechanisms which transport data to subsystems of computers which fulfil a significant fraction of the workload that computers are tasked with. Inevitably with this change, assumptions which were made at the beginning of the last major shift in computing are becoming outdated. We introduce a new latency-bandwidth model which captures the characteristics of sending multiple small messages in quick succession on modern networks. Contrary to other models representing the same effects, the pipelining latency-bandwidth model is simple and physically based. In addition, we develop a discrete-event simulation, Fennel, to capture non-analytical effects of communication within models. AllReduce operations with small messages are common throughout supercomputing, particularly for iterative methods. The performance of network operations are crucial to the overall time-to-solution of an application as a whole. The Message Passing Interface standard was introduced to abstract complex communications from application level development. The underlying algorithms used for the implementation to achieve the specified behaviour, such as the recursive doubling algorithm for AllReduce, have to evolve with the computers on which they are used. We introduce the recursive multiplying algorithm as a generalisation of recursive doubling. By utilising the pipelining nature of modern networks, we lower the latency of AllReduce operations and enable greater choice of schedule. A heuristic is used to quickly generate a near-optimal schedule, by using the pipelining latency-bandwidth model. Alongside recursive multiplying, the endpoints of collective operations must be able to handle larger numbers of incoming messages. Typically this is done by duplicating receive queues for remote peers, but this requires a linear amount of memory space for the size of the application. We introduce a single-consumer multipleproducer queue which is designed to be used with MPI as a protocol to insert messages remotely, with minimal contention for shared receive queues
    corecore