1,587 research outputs found

    Acquisition of computer research equipment

    Get PDF
    Issued as Final report, Project no. G-36-61

    An approach to rollback recovery of collaborating mobile agents

    Get PDF
    Fault-tolerance is one of the main problems that must be resolved to improve the adoption of the agents' computing paradigm. In this paper, we analyse the execution model of agent platforms and the significance of the faults affecting their constituent components on the reliable execution of agent-based applications, in order to develop a pragmatic framework for agent systems fault-tolerance. The developed framework deploys a communication-pairs independent check pointing strategy to offer a low-cost, application-transparent model for reliable agent- based computing that covers all possible faults that might invalidate reliable agent execution, migration and communication and maintains the exactly-one execution property

    Low cost management of replicated data in fault-tolerant distributed systems

    Get PDF
    Many distributed systems replicate data for fault tolerance or availability. In such systems, a logical update on a data item results in a physical update on a number of copies. The synchronization and communication required to keep the copies of replicated data consistent introduce a delay when operations are performed. A technique is described that relaxes the usual degree of synchronization, permitting replicated data items to be updated concurrently with other operations, while at the same time ensuring that correctness is not violated. The additional concurrency thus obtained results in better response time when performing operations on replicated data. How this technique performs in conjunction with a roll-back and a roll-forward failure recovery mechanism is also discussed

    Attributes of fault-tolerant distributed file systems

    Get PDF
    Fault tolerance in distributed file systems will be investigated by analyzing recovery techniques and concepts implemented within the following models of distributed systems: pool-processor model and user-server model. The research presented provides an overview of fault tolerance characteristics and mechanisms within current implementations and summarizes future directions for fault tolerant distributed file systems

    Fault tolerance distributed computing

    Get PDF
    Issued as Funds expenditure reports [nos. 1-4], Quarterly progress reports [nos. 1-3], and Final report, Project no. G-36-63

    Fault tolerant software technology for distributed computing system

    Get PDF
    Issued as Monthly reports [nos. 1-23], Interim technical report, Technical guide books [nos. 1-2], and Final report, Project no. G-36-64

    A support architecture for reliable distributed computing systems

    Get PDF
    The Clouds kernel design was through several design phases and is nearly complete. The object manager, the process manager, the storage manager, the communications manager, and the actions manager are examined

    Keeping Authorities "Honest or Bust" with Decentralized Witness Cosigning

    Get PDF
    The secret keys of critical network authorities - such as time, name, certificate, and software update services - represent high-value targets for hackers, criminals, and spy agencies wishing to use these keys secretly to compromise other hosts. To protect authorities and their clients proactively from undetected exploits and misuse, we introduce CoSi, a scalable witness cosigning protocol ensuring that every authoritative statement is validated and publicly logged by a diverse group of witnesses before any client will accept it. A statement S collectively signed by W witnesses assures clients that S has been seen, and not immediately found erroneous, by those W observers. Even if S is compromised in a fashion not readily detectable by the witnesses, CoSi still guarantees S's exposure to public scrutiny, forcing secrecy-minded attackers to risk that the compromise will soon be detected by one of the W witnesses. Because clients can verify collective signatures efficiently without communication, CoSi protects clients' privacy, and offers the first transparency mechanism effective against persistent man-in-the-middle attackers who control a victim's Internet access, the authority's secret key, and several witnesses' secret keys. CoSi builds on existing cryptographic multisignature methods, scaling them to support thousands of witnesses via signature aggregation over efficient communication trees. A working prototype demonstrates CoSi in the context of timestamping and logging authorities, enabling groups of over 8,000 distributed witnesses to cosign authoritative statements in under two seconds.Comment: 20 pages, 7 figure
    • …
    corecore