217 research outputs found

    Network domain entrypoint/path determination for DDoS attacks

    No full text
    Accepted versio

    Locating Network Domain Entry and Exit point/path for DDoS Attack Traffic

    No full text
    A method to determine entry and exit points or paths of DDoS attack traffic flows into and out of network domains is proposed. We observe valid source addresses seen by routers from sampled traffic under non-attack conditions. Under attack conditions, we detect route anomalies by determining which routers have been used for unknown source addresses, to construct the attack paths. We consider deployment issues and show results from simulations to prove the feasibility of our scheme. We then implement our Traceback mechanism in C++ and more realistic experiments are conducted. The experiments show that accurate results, with high traceback speed of a few seconds, are achieved. Compared to existing techniques, our approach is non-intrusive, not requiring any changes to the Internet routers and data packets. Precise information regarding the attack is not required allowing a wide variety of DDoS attack detection techniques to be used. The victim is also relieved from the traceback task during an attack. The scheme is simple and efficient, allowing for a fast traceback, and scalable due to the distribution of processing workload. © 2009 IEEE.Accepted versio

    On mitigating distributed denial of service attacks

    Get PDF
    Denial of service (DoS) attacks and distributed denial of service (DDoS) attacks are probably the most ferocious threats in the Internet, resulting in tremendous economic and social implications/impacts on our daily lives that are increasingly depending on the wellbeing of the Internet. How to mitigate these attacks effectively and efficiently has become an active research area. The critical issues here include 1) IP spoofing, i.e., forged source lIP addresses are routinely employed to conceal the identities of the attack sources and deter the efforts of detection, defense, and tracing; 2) the distributed nature, that is, hundreds or thousands of compromised hosts are orchestrated to attack the victim synchronously. Other related issues are scalability, lack of incentives to deploy a new scheme, and the effectiveness under partial deployment. This dissertation investigates and proposes effective schemes to mitigate DDoS attacks. It is comprised of three parts. The first part introduces the classification of DDoS attacks and the evaluation of previous schemes. The second part presents the proposed IP traceback scheme, namely, autonomous system-based edge marking (ASEM). ASEM enhances probabilistic packet marking (PPM) in several aspects: (1) ASEM is capable of addressing large-scale DDoS attacks efficiently; (2) ASEM is capable of handling spoofed marking from the attacker and spurious marking incurred by subverted routers, which is a unique and critical feature; (3) ASEM can significantly reduce the number of marked packets required for path reconstruction and suppress false positives as well. The third part presents the proposed DDoS defense mechanisms, including the four-color-theorem based path marking, and a comprehensive framework for DDoS defense. The salient features of the framework include (1) it is designed to tackle a wide spectrum of DDoS attacks rather than a specified one, and (2) it can differentiate malicious traffic from normal ones. The receiver-center design avoids several related issues such as scalability, and lack of incentives to deploy a new scheme. Finally, conclusions are drawn and future works are discussed

    A composable approach to design of newer techniques for large-scale denial-of-service attack attribution

    Get PDF
    Since its early days, the Internet has witnessed not only a phenomenal growth, but also a large number of security attacks, and in recent years, denial-of-service (DoS) attacks have emerged as one of the top threats. The stateless and destination-oriented Internet routing combined with the ability to harness a large number of compromised machines and the relative ease and low costs of launching such attacks has made this a hard problem to address. Additionally, the myriad requirements of scalability, incremental deployment, adequate user privacy protections, and appropriate economic incentives has further complicated the design of DDoS defense mechanisms. While the many research proposals to date have focussed differently on prevention, mitigation, or traceback of DDoS attacks, the lack of a comprehensive approach satisfying the different design criteria for successful attack attribution is indeed disturbing. Our first contribution here has been the design of a composable data model that has helped us represent the various dimensions of the attack attribution problem, particularly the performance attributes of accuracy, effectiveness, speed and overhead, as orthogonal and mutually independent design considerations. We have then designed custom optimizations along each of these dimensions, and have further integrated them into a single composite model, to provide strong performance guarantees. Thus, the proposed model has given us a single framework that can not only address the individual shortcomings of the various known attack attribution techniques, but also provide a more wholesome counter-measure against DDoS attacks. Our second contribution here has been a concrete implementation based on the proposed composable data model, having adopted a graph-theoretic approach to identify and subsequently stitch together individual edge fragments in the Internet graph to reveal the true routing path of any network data packet. The proposed approach has been analyzed through theoretical and experimental evaluation across multiple metrics, including scalability, incremental deployment, speed and efficiency of the distributed algorithm, and finally the total overhead associated with its deployment. We have thereby shown that it is realistically feasible to provide strong performance and scalability guarantees for Internet-wide attack attribution. Our third contribution here has further advanced the state of the art by directly identifying individual path fragments in the Internet graph, having adopted a distributed divide-and-conquer approach employing simple recurrence relations as individual building blocks. A detailed analysis of the proposed approach on real-life Internet topologies with respect to network storage and traffic overhead, has provided a more realistic characterization. Thus, not only does the proposed approach lend well for simplified operations at scale but can also provide robust network-wide performance and security guarantees for Internet-wide attack attribution. Our final contribution here has introduced the notion of anonymity in the overall attack attribution process to significantly broaden its scope. The highly invasive nature of wide-spread data gathering for network traceback continues to violate one of the key principles of Internet use today - the ability to stay anonymous and operate freely without retribution. In this regard, we have successfully reconciled these mutually divergent requirements to make it not only economically feasible and politically viable but also socially acceptable. This work opens up several directions for future research - analysis of existing attack attribution techniques to identify further scope for improvements, incorporation of newer attributes into the design framework of the composable data model abstraction, and finally design of newer attack attribution techniques that comprehensively integrate the various attack prevention, mitigation and traceback techniques in an efficient manner

    IP traceback with deterministic packet marking DPM

    Get PDF
    In this dissertation, a novel approach to Internet Protocol (IP) Traceback - Deterministic Packet Marking (DPM) is presented. The proposed approach is scalable, simple to implement, and introduces no bandwidth and practically no processing overhead on the network equipment. It is capable of tracing thousands of simultaneous attackers during a Distributed Denial of Service (DDoS) attack. Given sufficient deployment on the Internet, DPM is capable of tracing back to the slaves for DDoS attacks which involve reflectors. Most of the processing is done at the victim. The traceback process can be performed post-mortem, which allows for tracing the attacks that may not have been noticed initially or the attacks which would deny service to the victim, so that traceback is impossible in real time. Deterministic Packet Marking does not introduce the errors for the reassembly errors usually associated with other packet marking schemes. More than 99.99% of fragmented traffic will not be affected by DPM. The involvement of the Internet service providers (ISP) is very limited, and changes to the infrastructure and operation required to deploy DPM are minimal. Deterministic Packet Marking performs the traceback without revealing the internal topology of the provider\u27s network, which is a desirable quality of a traceback scheme
    • …
    corecore