465 research outputs found

    Connections Between Products and Contexts. Key Drivers for the Design of a Product

    Get PDF
    According to the recent economic situation, the actual business model will not be sustainable for a long time. In this paper we want propose a design methodology, which leads the possibility to influence people behaviours through the products. The aim of this paper is to underline the role of the designer, as director of the process, in order to coordinate involved actors and actions. This approach suggests a result, namely a product, which uses the local resources preserving material and cultural tradition and furthermore understanding the relationships between the costumer and his territory. The link between the product and its context defines a "surplus value" which characterizes the design process as "sustainable". According to that, the final aim should be a "customised product" defined through a muldisciplinary approach, where the role of the designer is creating a dialogue among all the different actors involved in the definition of the produc

    Connections Between Products and Contexts. Key Drivers for the Design of a Product

    Get PDF
    According to the recent economic situation, the actual business model will not be sustainable for a long time. In this paper we want propose a design methodology, which leads the possibility to influence people behaviours through the products. The aim of this paper is to underline the role of the designer, as director of the process, in order to coordinate involved actors and actions. This approach suggests a result, namely a product, which uses the local resources preserving material and cultural tradition and furthermore understanding the relationships between the costumer and his territory. The link between the product and its context defines a “surplus value” which characterizes the design process as “sustainable”. According to that, the final aim should be a “customised product” defined through a muldisciplinary approach, where the role of the designer is creating a dialogue among all the different actors involved in the definition of the product

    Distributed adaptive signal processing for frequency estimation

    Get PDF
    It is widely recognised that future smart grids will heavily rely upon intelligent communication and signal processing as enabling technologies for their operation. Traditional tools for power system analysis, which have been built from a circuit theory perspective, are a good match for balanced system conditions. However, the unprecedented changes that are imposed by smart grid requirements, are pushing the limits of these old paradigms. To this end, we provide new signal processing perspectives to address some fundamental operations in power systems such as frequency estimation, regulation and fault detection. Firstly, motivated by our finding that any excursion from nominal power system conditions results in a degree of non-circularity in the measured variables, we cast the frequency estimation problem into a distributed estimation framework for noncircular complex random variables. Next, we derive the required next generation widely linear, frequency estimators which incorporate the so-called augmented data statistics and cater for the noncircularity and a widely linear nature of system functions. Uniquely, we also show that by virtue of augmented complex statistics, it is possible to treat frequency tracking and fault detection in a unified way. To address the ever shortening time-scales in future frequency regulation tasks, the developed distributed widely linear frequency estimators are equipped with the ability to compensate for the fewer available temporal voltage data by exploiting spatial diversity in wide area measurements. This contribution is further supported by new physically meaningful theoretical results on the statistical behavior of distributed adaptive filters. Our approach avoids the current restrictive assumptions routinely employed to simplify the analysis by making use of the collaborative learning strategies of distributed agents. The efficacy of the proposed distributed frequency estimators over standard strictly linear and stand-alone algorithms is illustrated in case studies over synthetic and real-world three-phase measurements. An overarching theme in this thesis is the elucidation of underlying commonalities between different methodologies employed in classical power engineering and signal processing. By revisiting fundamental power system ideas within the framework of augmented complex statistics, we provide a physically meaningful signal processing perspective of three-phase transforms and reveal their intimate connections with spatial discrete Fourier transform (DFT), optimal dimensionality reduction and frequency demodulation techniques. Moreover, under the widely linear framework, we also show that the two most widely used frequency estimators in the power grid are in fact special cases of frequency demodulation techniques. Finally, revisiting classic estimation problems in power engineering through the lens of non-circular complex estimation has made it possible to develop a new self-stabilising adaptive three-phase transformation which enables algorithms designed for balanced operating conditions to be straightforwardly implemented in a variety of real-world unbalanced operating conditions. This thesis therefore aims to help bridge the gap between signal processing and power communities by providing power system designers with advanced estimation algorithms and modern physically meaningful interpretations of key power engineering paradigms in order to match the dynamic and decentralised nature of the smart grid.Open Acces

    Atomization and mixing study

    Get PDF
    The state of the art in atomization and mixing for triplet, pentad, and coaxial injectors is described. Injectors that are applicable for LOX/hydrocarbon propellants and main chamber and fuel rich preburner/gas generator mixture ratios are of special interest. Various applicable correlating equations and parameters as well as test data found in the literature are presented. The validity, utility, and important aspects of these data and correlations are discussed and the measurement techniques used are evaluated. Propellant mixing tests performed are described and summarized, results are reported, and tentative conclusions are included

    Numerical simulation of gas-lubricated journal bearings for microfabricated machines

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2000.Includes bibliographical references (p. 203-208).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Numerical simulations of gas-lubricated journal bearings for microfabricated machines are performed with specialized tools. To maximize flexibility, an orbit method formulation is chosen for the primary tool. Its pseudospectral fluid equation solver enables run-time resolution adjustment while maintaining the efficiency advantage of spectral methods. A design framework is established for microfabricated bearings, including several new charts that reflect the unique constraints of MEMS. A duality between applied load and imbalance level is demonstrated and a method for experimentally determining appropriate loads for unknown imbalance is suggested. A large-amplitude whirling mode is shown to exist on both sides of the fixed-point threshold speed, in agreement with experimental observation. A quasi-static method for calculating shock tolerance is suggested and evaluated against unsteady simulations. Simulations of loads applied via non-circumferentially-uniform pressure at the bearing end are shown to increase the attitude angle and decrease the allowable nondimensional mass compared to the equivalent gravity-loaded case. Furthermore, the associated axial pressure gradients are shown to produce a hydrostatic stiffness via inertial effects. A nondimensional model is constructed for this stiffness and its dependence on various parameters is studied. It is shown that the load capacity advantage reported in the literature for noncircular bearings can be canceled by microfabrication constraints. The stability advantage, however, survives. Tapered axial clearance is shown to have an extremely deleterious effect on performance while bowed clearance proves less detrimental. Navier-Stokes solutions of infinite-length bearings with unity inertial parameters are performed using a second specially-built tool. Little change is found in the steady-state results from inertial and curvature effects in the MIT microengine’s parameter space.by Edward Stanley Piekos.Ph.D

    Latent variable regression and applications to planetary seismic instrumentation

    Get PDF
    The work presented in this thesis is framed by the concept of latent variables, a modern data analytics approach. A latent variable represents an extracted component from a dataset which is not directly measured. The concept is first applied to combat the problem of ill-posed regression through the promising method of partial least squares (PLS). In this context the latent variables within a data matrix are extracted through an iterative algorithm based on cross-covariance as an optimisation criterion. This work first extends the PLS algorithm, using adaptive and recursive techniques, for online, non-stationary data applications. The standard PLS algorithm is further generalised for complex-, quaternion- and tensor-valued data. In doing so it is shown that the multidimensional algebras facilitate physically meaningful representations, demonstrated through smart-grid frequency estimation and image-classification tasks. The second part of the thesis uses this knowledge to inform a performance analysis of the MEMS microseismometer implemented for the InSight mission to Mars. This is given in terms of the sensor's intrinsic self-noise, the estimation of which is achieved from experimental data with a colocated instrument. The standard coherence and proposed delta noise estimators are analysed with respect to practical issues. The implementation of algorithms for the alignment, calibration and post-processing of the data then enabled a definitive self-noise estimate, validated from data acquired in ultra-quiet, deep-space environment. A method for the decorrelation of the microseismometer's output from its thermal response is proposed. To do so a novel sensor fusion approach based on the Kalman filter is developed for a full-band transfer-function correction, in contrast to the traditional ill-posed frequency division method. This algorithm was applied to experimental data which determined the thermal model coefficients while validating the sensor's performance at tidal frequencies 1E-5Hz and in extreme environments at -65C. This thesis, therefore, provides a definitive view of the latent variables perspective. This is achieved through the general algorithms developed for regression with multidimensional data and the bespoke application to seismic instrumentation.Open Acces

    Radial Velocity Prospects Current and Future: A White Paper Report prepared by the Study Analysis Group 8 for the Exoplanet Program Analysis Group (ExoPAG)

    Full text link
    [Abridged] The Study Analysis Group 8 of the NASA Exoplanet Analysis Group was convened to assess the current capabilities and the future potential of the precise radial velocity (PRV) method to advance the NASA goal to "search for planetary bodies and Earth-like planets in orbit around other stars.: (U.S. National Space Policy, June 28, 2010). PRVs complement other exoplanet detection methods, for example offering a direct path to obtaining the bulk density and thus the structure and composition of transiting exoplanets. Our analysis builds upon previous community input, including the ExoPlanet Community Report chapter on radial velocities in 2008, the 2010 Decadal Survey of Astronomy, the Penn State Precise Radial Velocities Workshop response to the Decadal Survey in 2010, and the NSF Portfolio Review in 2012. The radial-velocity detection of exoplanets is strongly endorsed by both the Astro 2010 Decadal Survey "New Worlds, New Horizons" and the NSF Portfolio Review, and the community has recommended robust investment in PRVs. The demands on telescope time for the above mission support, especially for systems of small planets, will exceed the number of nights available using instruments now in operation by a factor of at least several for TESS alone. Pushing down towards true Earth twins will require more photons (i.e. larger telescopes), more stable spectrographs than are currently available, better calibration, and better correction for stellar jitter. We outline four hypothetical situations for PRV work necessary to meet NASA mission exoplanet science objectives.Comment: ExoPAG SAG 8 final report, 112 pages, fixed author name onl

    Galaxy Masses

    Get PDF
    Galaxy masses play a fundamental role in our understanding of structure formation models. This review addresses the variety and reliability of mass estimators that pertain to stars, gas, and dark matter. The different sections on masses from stellar populations, dynamical masses of gas-rich and gas-poor galaxies, with some attention paid to our Milky Way, and masses from weak and strong lensing methods, all provide review material on galaxy masses in a self-consistent manner.Comment: 145 pages, 28 figures, to appear in Reviews of Modern Physics. Figure 22 is missing here, and Figs. 15, 26-28 are at low resolution. This version has a slightly different title and some typos fixed in Chapter 5. For the full review with figures, please consult: http://www.astro.queensu.ca/~courteau/GalaxyMasses_28apr2014.pd
    corecore