11 research outputs found

    An Ultra-Energy-Efficient Reversible Quantum-Dot Cellular Automata 8:1 Multiplexer Circuit

    Get PDF
    Energy efficiency considerations in terms of reduced power dissipation are a significant issue in the design of digital circuits for very large-scale integration (VLSI) systems. Quantum-dot cellular automata (QCA) is an emerging ultralow power dissipation approach, distinct from traditional, complementary metal-oxide semiconductor (CMOS) technology, for building digital computing circuits. Developing fully reversible QCA circuits has the potential to significantly reduce energy dissipation. Multiplexers are fundamental elements in the construction of useful digital circuits. In this paper, a novel, multilayer, fully reversible QCA 8:1 multiplexer circuit with ultralow energy dissipation is introduced. The power dissipation of the proposed multiplexer is simulated using the QCADesigner-E version 2.2 tool, describing the microscopic physical mechanisms underlying the QCA operation. The results show that the proposed reversible QCA 8:1 multiplexer consumes 89% less energy than the most energy-efficient 8:1 multiplexer circuit previously presented in the literature

    An Ultra-Energy-Efficient Reversible Quantum-Dot Cellular Automata 8:1 Multiplexer Circuit

    Get PDF
    Energy efficiency considerations in terms of reduced power dissipation are a significant issue in the design of digital circuits for very large-scale integration (VLSI) systems. Quantum-dot cellular automata (QCA) is an emerging ultralow power dissipation approach, distinct from traditional, complementary metal-oxide semiconductor (CMOS) technology, for building digital computing circuits. Developing fully reversible QCA circuits has the potential to significantly reduce energy dissipation. Multiplexers are fundamental elements in the construction of useful digital circuits. In this paper, a novel, multilayer, fully reversible QCA 8:1 multiplexer circuit with ultralow energy dissipation is introduced. The power dissipation of the proposed multiplexer is simulated using the QCADesigner-E version 2.2 tool, describing the microscopic physical mechanisms underlying the QCA operation. The results show that the proposed reversible QCA 8:1 multiplexer consumes 89% less energy than the most energy-efficient 8:1 multiplexer circuit previously presented in the literature

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented

    Architectural Solutions for NanoMagnet Logic

    Get PDF
    The successful era of CMOS technology is coming to an end. The limit on minimum fabrication dimensions of transistors and the increasing leakage power hinder the technological scaling that has characterized the last decades. In several different ways, this problem has been addressed changing the architectures implemented in CMOS, adopting parallel processors and thus increasing the throughput at the same operating frequency. However, architectural alternatives cannot be the definitive answer to a continuous increase in performance dictated by Moore’s law. This problem must be addressed from a technological point of view. Several alternative technologies that could substitute CMOS in next years are currently under study. Among them, magnetic technologies such as NanoMagnet Logic (NML) are interesting because they do not dissipate any leakage power. More- over, magnets have memory capability, so it is possible to merge logic and memory in the same device. However, magnetic circuits, and NML in this specific research, have also some important drawbacks that need to be addressed: first, the circuit clock frequency is limited to 100 MHz, to avoid errors in data propagation; second, there is a connection between circuit layout and timing, and in particular, longer wires will have longer latency. These drawbacks are intrinsic to the technology and for this reason they cannot be avoided. The only chance is to limit their impact from an architectural point of view. The first step followed in the research path of this thesis is indeed the choice and optimization of architectures able to deal with the problems of NML. Systolic Ar- rays are identified as an ideal solution for this technology, because they are regular structures with local interconnections that limit the long latency of wires; more- over they are composed of several Processing Elements that work in parallel, thus exploit parallelization to increase throughput (limiting the impact of the low clock frequency). Through the analysis of Systolic Arrays for NML, several possible im- provements have been identified and addressed: 1) it has been defined a rigorous way to increase throughput with interleaving, providing equations that allow to esti- mate the number of operations to be interleaved and the rules to provide inputs; 2) a latency insensitive circuit has been designed, that exploits a data communication protocol between processing elements to avoid data synchronization problems. This feature has been exploited to design a latency insensitive Systolic Array that is able to execute the Floyd-Steinberg dithering algorithm. All the improvements presented in this framework apply to Systolic Arrays implemented in any technology. So, they can also be exploited to increase performance of today’s CMOS parallel circuits. This research path is presented in Chapter 3. While Systolic Arrays are an interesting solution for NML, their usage could be quite limited because they are normally application-specific. The second re- search path addresses this problem. A Reconfigurable Systolic Array is presented, that can be programmed to execute several algorithms. This architecture has been tested implementing many algorithms, including FIR and IIR filters, Discrete Cosine Transform and Matrix Multiplication. This research path is presented in Chapter 4. In common Von Neumann architectures, the logic part of the circuit and the memory one are separated. Today bus communication between logic and memory represents the bottleneck of the system. This problem is addressed presenting Logic- In-Memory (LIM), an architecture where memory elements are merged in logic ones. This research path aims at defining a real LIM architectures. This has been done in two steps. The first step is represented by an architecture composed of three layers: memory, routing and logic. In the second step instead the routing plane is no more present, and its features are inherited by the memory plane. In this solution, a pyramidal memory model is used, where memories near logic elements contain the most probably used data, and other memory layers contain the remaining data and instruction set. This circuit has been tested with odd-even sort algorithms and it has been benchmarked against GPUs and ASIC. This research path is presented in Chapter 5. MagnetoElastic NML (ME-NML) is a technological improvement of the NML principle, proposed by researchers of Politecnico di Torino, where the clock system is based on the induced stretch of a piezoelectric substrate when a voltage is ap- plied to its boundaries. The main advantage of this solution is that it consumes much less power than the classic clock implementation. This technology has not yet been investigated from an architectural point of view and considering complex circuits. In this research field, a standard methodology for the design of ME-NML circuits has been proposed. It is based on a Standard Cell Library and an enhanced VHDL model. The effectiveness of this methodology has been proved designing a Galois Field Multiplier. Moreover the serial-parallel trade-off in ME-NML has been investigated, designing three different solutions for the Multiply and Accumulate structure. This research path is presented in Chapter 6. While ME-NML is an extremely interesting technology, it needs to be combined with other faster technologies to have a real competitive system. Signal interfaces between NML and other technologies (mainly CMOS) have been rarely presented in literature. A mixed-technology multiplexer is designed and presented as the basis for a CMOS to NML interface. The reverse interface (from ME-NML to CMOS) is instead based on a sensing circuit for the Faraday effect: a change in the polarization of a magnet induces an electric field that can be used to generate an input signal for a CMOS circuit. This research path is presented in Chapter 7. The research work presented in this thesis represents a fundamental milestone in the path towards nanotechnologies. The most important achievement is the de- sign and simulation of complex circuits with NML, benchmarking this technology with real application examples. The characterization of a technology considering complex functions is a major step to be performed and that has not yet been ad- dressed in literature for NML. Indeed, only in this way it is possible to intercept in advance any weakness of NanoMagnet Logic that cannot be discovered consid- ering only small circuits. Moreover, the architectural improvements introduced in this thesis, although technology-driven, can be actually applied to any technology. We have demonstrated the advantages that can derive applying them to CMOS cir- cuits. This thesis represents therefore a major step in two directions: the first is the enhancement of NML technology; the second is a general improvement of parallel architectures and the development of the new Logic-In-Memory paradigm

    MFPA: Mixed-Signal Field Programmable Array for Energy-Aware Compressive Signal Processing

    Get PDF
    Compressive Sensing (CS) is a signal processing technique which reduces the number of samples taken per frame to decrease energy, storage, and data transmission overheads, as well as reducing time taken for data acquisition in time-critical applications. The tradeoff in such an approach is increased complexity of signal reconstruction. While several algorithms have been developed for CS signal reconstruction, hardware implementation of these algorithms is still an area of active research. Prior work has sought to utilize parallelism available in reconstruction algorithms to minimize hardware overheads; however, such approaches are limited by the underlying limitations in CMOS technology. Herein, the MFPA (Mixed-signal Field Programmable Array) approach is presented as a hybrid spin-CMOS reconfigurable fabric specifically designed for implementation of CS data sampling and signal reconstruction. The resulting fabric consists of 1) slice-organized analog blocks providing amplifiers, transistors, capacitors, and Magnetic Tunnel Junctions (MTJs) which are configurable to achieving square/square root operations required for calculating vector norms, 2) digital functional blocks which feature 6-input clockless lookup tables for computation of matrix inverse, and 3) an MRAM-based nonvolatile crossbar array for carrying out low-energy matrix-vector multiplication operations. The various functional blocks are connected via a global interconnect and spin-based analog-to-digital converters. Simulation results demonstrate significant energy and area benefits compared to equivalent CMOS digital implementations for each of the functional blocks used: this includes an 80% reduction in energy and 97% reduction in transistor count for the nonvolatile crossbar array, 80% standby power reduction and 25% reduced area footprint for the clockless lookup tables, and roughly 97% reduction in transistor count for a multiplier built using components from the analog blocks. Moreover, the proposed fabric yields 77% energy reduction compared to CMOS when used to implement CS reconstruction, in addition to latency improvements

    SIGNAL PROCESSING TECHNIQUES AND APPLICATIONS

    Get PDF
    As the technologies scaling down, more transistors can be fabricated into the same area, which enables the integration of many components into the same substrate, referred to as system-on-chip (SoC). The components on SoC are connected by on-chip global interconnects. It has been shown in the recent International Technology Roadmap of Semiconductors (ITRS) that when scaling down, gate delay decreases, but global interconnect delay increases due to crosstalk. The interconnect delay has become a bottleneck of the overall system performance. Many techniques have been proposed to address crosstalk, such as shielding, buffer insertion, and crosstalk avoidance codes (CACs). The CAC is a promising technique due to its good crosstalk reduction, less power consumption and lower area. In this dissertation, I will present analytical delay models for on-chip interconnects with improved accuracy. This enables us to have a more accurate control of delays for transition patterns and lead to a more efficient CAC, whose worst-case delay is 30-40% smaller than the best of previously proposed CACs. As the clock frequency approaches multi-gigahertz, the parasitic inductance of on-chip interconnects has become significant and its detrimental effects, including increased delay, voltage overshoots and undershoots, and increased crosstalk noise, cannot be ignored. We introduce new CACs to address both capacitive and inductive couplings simultaneously.Quantum computers are more powerful in solving some NP problems than the classical computers. However, quantum computers suffer greatly from unwanted interactions with environment. Quantum error correction codes (QECCs) are needed to protect quantum information against noise and decoherence. Given their good error-correcting performance, it is desirable to adapt existing iterative decoding algorithms of LDPC codes to obtain LDPC-based QECCs. Several QECCs based on nonbinary LDPC codes have been proposed with a much better error-correcting performance than existing quantum codes over a qubit channel. In this dissertation, I will present stabilizer codes based on nonbinary QC-LDPC codes for qubit channels. The results will confirm the observation that QECCs based on nonbinary LDPC codes appear to achieve better performance than QECCs based on binary LDPC codes.As the technologies scaling down further to nanoscale, CMOS devices suffer greatly from the quantum mechanical effects. Some emerging nano devices, such as resonant tunneling diodes (RTDs), quantum cellular automata (QCA), and single electron transistors (SETs), have no such issues and are promising candidates to replace the traditional CMOS devices. Threshold gate, which can implement complex Boolean functions within a single gate, can be easily realized with these devices. Several applications dealing with real-valued signals have already been realized using nanotechnology based threshold gates. Unfortunately, the applications using finite fields, such as error correcting coding and cryptography, have not been realized using nanotechnology. The main obstacle is that they require a great number of exclusive-ORs (XORs), which cannot be realized in a single threshold gate. Besides, the fan-in of a threshold gate in RTD nanotechnology needs to be bounded for both reliability and performance purpose. In this dissertation, I will present a majority-class threshold architecture of XORs with bounded fan-in, and compare it with a Boolean-class architecture. I will show an application of the proposed XORs for the finite field multiplications. The analysis results will show that the majority class outperforms the Boolean class architectures in terms of hardware complexity and latency. I will also introduce a sort-and-search algorithm, which can be used for implementations of any symmetric functions. Since XOR is a special symmetric function, it can be implemented via the sort-and-search algorithm. To leverage the power of multi-input threshold functions, I generalize the previously proposed sort-and-search algorithm from a fan-in of two to arbitrary fan-ins, and propose an architecture of multi-input XORs with bounded fan-ins

    An Initial Framework Assessing the Safety of Complex Systems

    Get PDF
    Trabajo presentado en la Conference on Complex Systems, celebrada online del 7 al 11 de diciembre de 2020.Atmospheric blocking events, that is large-scale nearly stationary atmospheric pressure patterns, are often associated with extreme weather in the mid-latitudes, such as heat waves and cold spells which have significant consequences on ecosystems, human health and economy. The high impact of blocking events has motivated numerous studies. However, there is not yet a comprehensive theory explaining their onset, maintenance and decay and their numerical prediction remains a challenge. In recent years, a number of studies have successfully employed complex network descriptions of fluid transport to characterize dynamical patterns in geophysical flows. The aim of the current work is to investigate the potential of so called Lagrangian flow networks for the detection and perhaps forecasting of atmospheric blocking events. The network is constructed by associating nodes to regions of the atmosphere and establishing links based on the flux of material between these nodes during a given time interval. One can then use effective tools and metrics developed in the context of graph theory to explore the atmospheric flow properties. In particular, Ser-Giacomi et al. [1] showed how optimal paths in a Lagrangian flow network highlight distinctive circulation patterns associated with atmospheric blocking events. We extend these results by studying the behavior of selected network measures (such as degree, entropy and harmonic closeness centrality)at the onset of and during blocking situations, demonstrating their ability to trace the spatio-temporal characteristics of these events.This research was conducted as part of the CAFE (Climate Advanced Forecasting of sub-seasonal Extremes) Innovative Training Network which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813844

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF

    An Efficient Design of DCT Approximation Based on Quantum Dot Cellular Automata (QCA) Technology

    No full text
    Optimization for power is one of the most important design objectives in modern digital image processing applications. The DCT is considered to be one of the most essential techniques in image and video compression systems, and consequently a number of extensive works had been carried out by researchers on the power optimization. On the other hand, quantum-dot cellular automata (QCA) can present a novel opportunity for the design of highly parallel architectures and algorithms for improving the performance of image and video processing systems. Furthermore, it has considerable advantages in comparison with CMOS technology, such as extremely low power dissipation, high operating frequency, and a small size. Therefore, in this study, the authors propose a multiplier-less DCT architecture in QCA technology. The proposed design provides high circuit performance, very low power consumption, and very low dimension outperform to the existing conventional structures. The QCADesigner tool has been utilized for QCA circuit design and functional verification of all designs in this work. QCAPro, a very widespread power estimator tool, is applied to estimate the power dissipation of the proposed circuit. The suggested design has 53% improvement in terms of power over the conventional solution. The outcome of this work can clearly open up a new window of opportunity for low power image processing systems
    corecore