109 research outputs found

    A Review on Biological Inspired Computation in Cryptology

    Get PDF
    Cryptology is a field that concerned with cryptography and cryptanalysis. Cryptography, which is a key technology in providing a secure transmission of information, is a study of designing strong cryptographic algorithms, while cryptanalysis is a study of breaking the cipher. Recently biological approaches provide inspiration in solving problems from various fields. This paper reviews major works in the application of biological inspired computational (BIC) paradigm in cryptology. The paper focuses on three BIC approaches, namely, genetic algorithm (GA), artificial neural network (ANN) and artificial immune system (AIS). The findings show that the research on applications of biological approaches in cryptology is minimal as compared to other fields. To date only ANN and GA have been used in cryptanalysis and design of cryptographic primitives and protocols. Based on similarities that AIS has with ANN and GA, this paper provides insights for potential application of AIS in cryptology for further research

    Building Secure and Fast Cryptographic Hash Functions Using Programmable Cellular Automata

    Get PDF
    Cryptographic hash functions have recently brought an exceptional research interest. With the increasing number of attacks against the widely used functions as MD5, SHA-1 and RIPEMD, the need to consider new hash functions design and conception strategies becomes crucial. In this paper, we propose a fast and efficient hash function using programmable cellular automata that are very suitable for cryptographic applications due to their chaotic and complex behavior derived from simple rules interaction. The proposed function is evaluated using several statistical tests, while obtained results demonstrate very admissible cryptographic properties such as confusion/diffusion capability and high sensitivity to input changes. Furthermore, the hashing scheme can be easily implemented through software or hardware, so it provides very competitive running performances

    Artificial Intelligence for the design of symmetric cryptographic primitives

    Get PDF
    Algorithms and the Foundations of Software technolog

    New Classes of Binary Random Sequences for Cryptography

    Get PDF
    In the vision for the 5G wireless communications advancement that yield new security prerequisites and challenges we propose a catalog of three new classes of pseudorandom random sequence generators. This dissertation starts with a review on the requirements of 5G wireless networking systems and the most recent development of the wireless security services applied to 5G, such as private-keys generation, key protection, and flexible authentication. This dissertation proposes new complexity theory-based, number-theoretic approaches to generate lightweight pseudorandom sequences, which protect the private information using spread spectrum techniques. For the class of new pseudorandom sequences, we obtain the generalization. Authentication issues of communicating parties in the basic model of Piggy Bank cryptography is considered and a flexible authentication using a certified authority is proposed

    A reversible system based on hybrid toggle radius-4 cellular automata and its application as a block cipher

    Full text link
    The dynamical system described herein uses a hybrid cellular automata (CA) mechanism to attain reversibility, and this approach is adapted to create a novel block cipher algorithm called HCA. CA are widely used for modeling complex systems and employ an inherently parallel model. Therefore, applications derived from CA have a tendency to fit very well in the current computational paradigm where scalability and multi-threading potential are quite desirable characteristics. HCA model has recently received a patent by the Brazilian agency INPI. Several evaluations and analyses performed on the model are presented here, such as theoretical discussions related to its reversibility and an analysis based on graph theory, which reduces HCA security to the well-known Hamiltonian cycle problem that belongs to the NP-complete class. Finally, the cryptographic robustness of HCA is empirically evaluated through several tests, including avalanche property compliance and the NIST randomness suite.Comment: 34 pages, 12 figure

    Chaos and Cellular Automata-Based Substitution Box and Its Application in Cryptography

    Get PDF
    Substitution boxes are the key factor in symmetric-key cryptosystems that determines their ability to resist various cryptanalytic attacks. Creating strong substitution boxes that have multiple strong cryptographic properties at the same time is a challenging task for cryptographers. A significant amount of research has been conducted on S-boxes in the past few decades, but the resulting S-boxes have been found to be vulnerable to various cyberattacks. This paper proposes a new method for creating robust S-boxes that exhibit superior performance and possess high scores in multiple cryptographic properties. The hybrid S-box method presented in this paper is based on Chua’s circuit chaotic map, two-dimensional cellular automata, and an algebraic permutation group structure. The proposed 16×16 S-box has an excellent performance in terms of security parameters, including a minimum nonlinearity of 102, the absence of fixed points, the satisfaction of bit independence and strict avalanche criteria, a low differential uniformity of 5, a low linear approximation probability of 0.0603, and an auto-correlation function of 28. The analysis of the performance comparison indicates that the proposed S-box outperforms other state-of-the-art S-box techniques in several aspects. It possesses better attributes, such as a higher degree of inherent security and resilience, which make it more secure and less vulnerable to potential attacks

    A novel symmetric image cryptosystem resistant to noise perturbation based on S8 elliptic curve S-boxes and chaotic maps

    Get PDF
    The recent decade has seen a tremendous escalation of multimedia and its applications. These modern applications demand diverse security requirements and innovative security platforms. In this manuscript, we proposed an algorithm for image encryption applications. The core structure of this algorithm relies on confusion and diffusion operations. The confusion is mainly done through the application of the elliptic curve and S8 symmetric group. The proposed work incorporates three distinct chaotic maps. A detailed investigation is presented to analyze the behavior of chaos for secure communication. The chaotic sequences are then accordingly applied to the proposed algorithm. The modular approach followed in the design framework and integration of chaotic maps into the system makes the algorithm viable for a variety of image encryption applications. The resiliency of the algorithm can further be enhanced by increasing the number of rounds and S-boxes deployed. The statistical findings and simulation results imply that the algorithm is resistant to various attacks. Moreover, the algorithm satisfies all major performance and quality metrics. The encryption scheme can also resist channel noise as well as noise-induced by a malicious user. The decryption is successfully done for noisy data with minor distortions. The overall results determine that the proposed algorithm contains good cryptographic properties and low computational complexity makes it viable to low profile applications

    Modern and Lightweight Component-based Symmetric Cipher Algorithms: A Review

    Get PDF
    Information security, being one of the corner stones of network and communication technology, has been evolving tremendously to cope with the parallel evolution of network security threats. Hence, cipher algorithms in the core of the information security process have more crucial role to play here, with continuous need for new and unorthodox designs to meet the increasing complexity of the applications environment that keep offering challenges to the current existing cipher algorithms. The aim of this review is to present symmetric cipher main components, the modern and lightweight symmetric cipher algorithms design based on the components that utilized in cipher design, highlighting the effect of each component and the essential component among them, how the modern cipher has modified to lightweight cipher by reducing the number and size of these components, clarify how these components give the strength for symmetric cipher versus asymmetric of cipher. Moreover, a new classification of cryptography algorithms to four categories based on four factors is presented. Finally, some modern and lightweight symmetric cipher algorithms are selected, presented with a comparison between them according to their components by taking into considerations the components impact on security, performance, and resource requirements
    corecore