140 research outputs found

    Image super-resolution with dense-sampling residual channel-spatial attention networks for multi-temporal remote sensing image classification

    Get PDF
    Image super-resolution (SR) techniques can benefit a wide range of applications in the remote sensing (RS) community, including image classification. This issue is particularly relevant for image classification on time series data, considering RS datasets that feature long temporal coverage generally have a limited spatial resolution. Recent advances in deep learning brought new opportunities for enhancing the spatial resolution of historic RS data. Numerous convolutional neural network (CNN)-based methods showed superior performance in terms of developing efficient end-to-end SR models for natural images. However, such models were rarely exploited for promoting image classification based on multispectral RS data. This paper proposes a novel CNNbased framework to enhance the spatial resolution of time series multispectral RS images. Thereby, the proposed SR model employs Residual Channel Attention Networks (RCAN) as a backbone structure, whereas based on this structure the proposed models uniquely integrate tailored channel-spatial attention and dense-sampling mechanisms for performance improvement. Subsequently, state-of-the-art CNN-based classifiers are incorporated to produce classification maps based on the enhanced time series data. The experiments proved that the proposed SR model can enable unambiguously better performance compared to RCAN and other (deep learning-based) SR techniques, especially in a domain adaptation context, i.e., leveraging Sentinel-2 images for generating SR Landsat images. Furthermore, the experimental results confirmed that the enhanced multi-temporal RS images can bring substantial improvement on fine-grained multi-temporal land use classification

    DRL-GAN: dual-stream representation learning GAN for low-resolution image classification in UAV applications.

    Get PDF
    Identifying tiny objects from extremely low resolution (LR) UAV-based remote sensing images is generally considered as a very challenging task, because of very limited information in the object areas. In recent years, there have been very limited attempts to approach this problem. These attempts intend to deal with LR image classification by enhancing either the poor image quality or image representations. In this paper, we argue that the performance improvement in LR image classification is affected by the inconsistency of the information loss and learning priority on Low-Frequency (LF) components and High-Frequency (HF) components. To address this LF-HF inconsistency problem, we propose a Dual-Stream Representation Learning Generative Adversarial Network (DRL-GAN).The core idea is to produce super image representations optimal for LR recognition by simultaneously recovering the missing information in LF and HF components, respectively, under the guidance of high-resolution (HR) images. We evaluate the performance of DRL-GAN on the challenging task of LR image classification. A comparison of the experimental results on the LR benchmark, namely HRSC and CIFAR-10, and our newly collected “WIDER-SHIP” dataset demonstrates the effectiveness of our DRL-GAN, which significantly improves the classification performance, with up to 10% gain on average

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Spatial-Spectral Manifold Embedding of Hyperspectral Data

    Get PDF
    In recent years, hyperspectral imaging, also known as imaging spectroscopy, has been paid an increasing interest in geoscience and remote sensing community. Hyperspectral imagery is characterized by very rich spectral information, which enables us to recognize the materials of interest lying on the surface of the Earth more easier. We have to admit, however, that high spectral dimension inevitably brings some drawbacks, such as expensive data storage and transmission, information redundancy, etc. Therefore, to reduce the spectral dimensionality effectively and learn more discriminative spectral low-dimensional embedding, in this paper we propose a novel hyperspectral embedding approach by simultaneously considering spatial and spectral information, called spatial-spectral manifold embedding (SSME). Beyond the pixel-wise spectral embedding approaches, SSME models the spatial and spectral information jointly in a patch-based fashion. SSME not only learns the spectral embedding by using the adjacency matrix obtained by similarity measurement between spectral signatures, but also models the spatial neighbours of a target pixel in hyperspectral scene by sharing the same weights (or edges) in the process of learning embedding. Classification is explored as a potential strategy to quantitatively evaluate the performance of learned embedding representations. Classification is explored as a potential application for quantitatively evaluating the performance of these hyperspectral embedding algorithms. Extensive experiments conducted on the widely-used hyperspectral datasets demonstrate the superiority and effectiveness of the proposed SSME as compared to several state-of-the-art embedding methods
    corecore