1,895 research outputs found

    A Compiler and Runtime Infrastructure for Automatic Program Distribution

    Get PDF
    This paper presents the design and the implementation of a compiler and runtime infrastructure for automatic program distribution. We are building a research infrastructure that enables experimentation with various program partitioning and mapping strategies and the study of automatic distribution's effect on resource consumption (e.g., CPU, memory, communication). Since many optimization techniques are faced with conflicting optimization targets (e.g., memory and communication), we believe that it is important to be able to study their interaction. We present a set of techniques that enable flexible resource modeling and program distribution. These are: dependence analysis, weighted graph partitioning, code and communication generation, and profiling. We have developed these ideas in the context of the Java language. We present in detail the design and implementation of each of the techniques as part of our compiler and runtime infrastructure. Then, we evaluate our design and present preliminary experimental data for each component, as well as for the entire system

    Advances in Engineering Software for Multicore Systems

    Get PDF
    The vast amounts of data to be processed by today’s applications demand higher computational power. To meet application requirements and achieve reasonable application performance, it becomes increasingly profitable, or even necessary, to exploit any available hardware parallelism. For both new and legacy applications, successful parallelization is often subject to high cost and price. This chapter proposes a set of methods that employ an optimistic semi-automatic approach, which enables programmers to exploit parallelism on modern hardware architectures. It provides a set of methods, including an LLVM-based tool, to help programmers identify the most promising parallelization targets and understand the key types of parallelism. The approach reduces the manual effort needed for parallelization. A contribution of this work is an efficient profiling method to determine the control and data dependences for performing parallelism discovery or other types of code analysis. Another contribution is a method for detecting code sections where parallel design patterns might be applicable and suggesting relevant code transformations. Our approach efficiently reports detailed runtime data dependences. It accurately identifies opportunities for parallelism and the appropriate type of parallelism to use as task-based or loop-based

    RPPM : Rapid Performance Prediction of Multithreaded workloads on multicore processors

    Get PDF
    Analytical performance modeling is a useful complement to detailed cycle-level simulation to quickly explore the design space in an early design stage. Mechanistic analytical modeling is particularly interesting as it provides deep insight and does not require expensive offline profiling as empirical modeling. Previous work in mechanistic analytical modeling, unfortunately, is limited to single-threaded applications running on single-core processors. This work proposes RPPM, a mechanistic analytical performance model for multi-threaded applications on multicore hardware. RPPM collects microarchitecture-independent characteristics of a multi-threaded workload to predict performance on a previously unseen multicore architecture. The profile needs to be collected only once to predict a range of processor architectures. We evaluate RPPM's accuracy against simulation and report a performance prediction error of 11.2% on average (23% max). We demonstrate RPPM's usefulness for conducting design space exploration experiments as well as for analyzing parallel application performance

    Discovery of Potential Parallelism in Sequential Programs

    Get PDF
    In the era of multicore processors, the responsibility for performance gains has been shifted onto software developers. Once improvements of the sequential algorithm have been exhausted, software-managed parallelism is the only option left. However, writing parallel code is still difficult, especially when parallelizing sequential code written by someone else. A key task in this process is the identification of suitable parallelization targets in the source code. Parallelism discovery tools help developers to find such targets automatically. Unfortunately, tools that identify parallelism during compilation are usually conservative due to the lack of runtime information, and tools relying on runtime information primarily suffer from high overhead in terms of both time and memory. This dissertation presents a generic framework for parallelism discovery based on dynamic program analysis, supporting various types of parallelism while incurring practically affordable overhead. The framework contains two main components: an efficient data-dependence profiler and a set of parallelism discovery algorithms based on a language-independent concept called Computational Unit. The data-dependence profiler serves as the foundation of the parallelism discovery framework. Traditional dependence profiling approaches introduce a tremendous amount of time and memory overhead. To lower the overhead, current methods limit their scope to the subset of the dependence information needed for the analysis they have been created for, sacrificing generality and discouraging reuse. In contrast, the profiler shown in this thesis addresses the problem via signature-based memory management and a lock-free parallel design. It produces detailed dependences not only for sequential but also for multi-threaded code without causing prohibitive overhead, allowing it to serve as a generic base for various program analysis techniques. Computational Units (CUs) provide a language-independent foundation for parallelism discovery. CUs are computations that follow the read-compute-write pattern. Unlike other concepts, they are not restricted to predefined language constructs. A program is represented as a CU graph, in which vertexes are CUs and edges are data dependences. This allows parallelism to be detected that spreads across multiple language constructs, taking code refactoring into consideration. The parallelism discovery algorithms cover both loop and task parallelism. Results of our experiments show that 1) the efficient data-dependence profiler has a very competitive average slowdown of around 80× with accuracy higher than 99.6%; 2) the framework discovers parallelism with high accuracy, identifying 92.5% of the parallel loops in NAS benchmarks; 3) when parallelizing well-known open-source software following the outputs of the framework, reasonable speedups are obtained. Finally, use cases beyond parallelism discovery are briefly demonstrated to show the generality of the framework

    A communication profiler to optimize embedded resource usage

    Get PDF
    While the number of cores in both embedded MultiProcessor Systems-on-Chip and general purpose processors keeps rising, on-chip communication becomes more and more important. In order to write efficient programs for these architectures, it is therefore necessary to have a good idea of the communication behavior of an application. We present a communication profiler that extracts this behavior from compiled sequential C/C++ programs, and constructs a dynamic dataflow graph at the level of major functional blocks. In contrast to existing methods of measuring inter-program communication, our tool automatically generates the program's dataflow graph and is less demanding for the developer. It can also be used to view differences between program phases (such as different video frames), which allows both input- and phase-specific optimizations to be made. We also look at how this information can subsequently be used to guide the effort of parallelizing the application, to co-design the software, memory hierarchy and communication hardware, and to provide new sources of communication-related runtime optimizations

    Parallelizing Sequential Programs With Statistical Accuracy Tests

    Get PDF
    We present QuickStep, a novel system for parallelizing sequential programs. QuickStep deploys a set of parallelization transformations that together induce a search space of candidate parallel programs. Given a sequential program, representative inputs, and an accuracy requirement, QuickStep uses performance measurements, profiling information, and statistical accuracy tests on the outputs of candidate parallel programs to guide its search for a parallelizationthat maximizes performance while preserving acceptable accuracy. When the search completes, QuickStep produces an interactive report that summarizes the applied parallelization transformations, performance, and accuracy results for the automatically generated candidate parallel programs. In our envisioned usage scenarios, the developer examines this report to evaluate the acceptability of the final parallelization and to obtain insight into how the original sequential program responds to different parallelization strategies. Itis also possible for the developer (or even a user of the program who has no software development expertise whatsoever) to simply use the best parallelization out of the box without examining the report or further investigating the parallelization. Results from our benchmark set of applications show that QuickStep can automatically generate accurate and efficient parallel programs---the automatically generated parallel versions of five of our six benchmark applications run between 5.0 and 7.7 times faster on 8 cores than the original sequential versions. Moreover, a comparison with the Intel icc compiler highlights how QuickStep can effectively parallelize applications with features (such as the use of modern object-oriented programming constructs or desirable parallelizations with infrequent but acceptable data races) that place them inherently beyond the reach of standard approaches

    Acceleration and semantic foundations of embedded Java platforms

    Get PDF
    Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2006-200
    corecore