355 research outputs found

    A biologically inspired computational vision front-end based on a self-organised pseudo-randomly tessellated artificial retina

    Get PDF
    This paper considers the construction of a biologically inspired front-end for computer vision based on an artificial retina pyramid with a self-organised pseudo-randomly tessellated receptive field tessellation. The organisation of photoreceptors and receptive fields in biological retinae locally resembles a hexagonal mosaic, whereas globally these are organised with a very densely tessellated central foveal region which seamlessly merges into an increasingly sparsely tessellated periphery. In contrast, conventional computer vision approaches use a rectilinear sampling tessellation which samples the whole field of view with uniform density. Scale-space interest points which are suitable for higher level attention and reasoning tasks are efficiently extracted by our vision front-end by performing hierarchical feature extraction on the pseudo-randomly spaced visual information. All operations were conducted on a geometrically irregular foveated representation (data structure for visual information) which is radically different to the uniform rectilinear arrays used in conventional computer vision

    A computer vision model for visual-object-based attention and eye movements

    Get PDF
    This is the post-print version of the final paper published in Computer Vision and Image Understanding. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.This paper presents a new computational framework for modelling visual-object-based attention and attention-driven eye movements within an integrated system in a biologically inspired approach. Attention operates at multiple levels of visual selection by space, feature, object and group depending on the nature of targets and visual tasks. Attentional shifts and gaze shifts are constructed upon their common process circuits and control mechanisms but also separated from their different function roles, working together to fulfil flexible visual selection tasks in complicated visual environments. The framework integrates the important aspects of human visual attention and eye movements resulting in sophisticated performance in complicated natural scenes. The proposed approach aims at exploring a useful visual selection system for computer vision, especially for usage in cluttered natural visual environments.National Natural Science of Founda- tion of Chin

    Biologically-inspired hierarchical architectures for object recognition

    Get PDF
    PhD ThesisThe existing methods for machine vision translate the three-dimensional objects in the real world into two-dimensional images. These methods have achieved acceptable performances in recognising objects. However, the recognition performance drops dramatically when objects are transformed, for instance, the background, orientation, position in the image, and scale. The human’s visual cortex has evolved to form an efficient invariant representation of objects from within a scene. The superior performance of human can be explained by the feed-forward multi-layer hierarchical structure of human visual cortex, in addition to, the utilisation of different fields of vision depending on the recognition task. Therefore, the research community investigated building systems that mimic the hierarchical architecture of the human visual cortex as an ultimate objective. The aim of this thesis can be summarised as developing hierarchical models of the visual processing that tackle the remaining challenges of object recognition. To enhance the existing models of object recognition and to overcome the above-mentioned issues, three major contributions are made that can be summarised as the followings 1. building a hierarchical model within an abstract architecture that achieves good performances in challenging image object datasets; 2. investigating the contribution for each region of vision for object and scene images in order to increase the recognition performance and decrease the size of the processed data; 3. further enhance the performance of all existing models of object recognition by introducing hierarchical topologies that utilise the context in which the object is found to determine the identity of the object. Statement ofHigher Committee For Education Development in Iraq (HCED

    Indexing Techniques for Image and Video Databases: an approach based on Animate Vision Paradigm

    Get PDF
    [ITALIANO]In questo lavoro di tesi vengono presentate e discusse delle innovative tecniche di indicizzazione per database video e di immagini basate sul paradigma della “Animate Vision” (Visione Animata). Da un lato, sarà mostrato come utilizzando, quali algoritmi di analisi di una data immagine, alcuni meccanismi di visione biologica, come i movimenti saccadici e le fissazioni dell'occhio umano, sia possibile ottenere un query processing in database di immagini più efficace ed efficiente. In particolare, verranno discussi, la metodologia grazie alla quale risulta possibile generare due sequenze di fissazioni, a partire rispettivamente, da un'immagine di query I_q ed una di test I_t del data set, e, come confrontare tali sequenze al fine di determinare una possibile misura della similarità (consistenza) tra le due immagini. Contemporaneamente, verrà discusso come tale approccio unito a tecniche classiche di clustering possa essere usato per scoprire le associazioni semantiche nascoste tra immagini, in termini di categorie, che, di contro, permettono un'automatica pre-classificazione (indicizzazione) delle immagini e possono essere usate per guidare e migliorare il processo di query. Saranno presentati, infine, dei risultati preliminari e l'approccio proposto sarà confrontato con le più recenti tecniche per il recupero di immagini descritte in letteratura. Dall'altro lato, sarà mostrato come utilizzando la precedente rappresentazione “foveata” di un'immagine, risulti possibile partizionare un video in shot. Più precisamente, il metodo per il rilevamento dei cambiamenti di shot si baserà sulla computazione, in ogni istante di tempo, della misura di consistenza tra le sequenze di fissazioni generate da un osservatore ideale che guarda il video. Lo schema proposto permette l'individuazione, attraverso l'utilizzo di un'unica tecnica anziché di più metodi dedicati, sia delle transizioni brusche sia di quelle graduali. Vengono infine mostrati i risultati ottenuti su varie tipologie di video e, come questi, validano l'approccio proposto. / [INGLESE]In this dissertation some novel indexing techniques for video and image database based on “Animate Vision” Paradigm are presented and discussed. From one hand, it will be shown how, by embedding within image inspection algorithms active mechanisms of biological vision such as saccadic eye movements and fixations, a more effective query processing in image database can be achieved. In particular, it will be discussed the way to generate two fixation sequences from a query image I_q and a test image I_t of the data set, respectively, and how to compare the two sequences in order to compute a possible similarity (consistency) measure between the two images. Meanwhile, it will be shown how the approach can be used with classical clustering techniques to discover and represent the hidden semantic associations among images, in terms of categories, which, in turn, allow an automatic pre-classification (indexing), and can be used to drive and improve the query processing. Eventually, preliminary results will be presented and the proposed approach compared with the most recent techniques for image retrieval described in the literature. From the other one, it will be discussed how by taking advantage of such foveated representation of an image, it is possible to partitioning of a video into shots. More precisely, the shot-change detection method will be based on the computation, at each time instant, of the consistency measure of the fixation sequences generated by an ideal observer looking at the video. The proposed scheme aims at detecting both abrupt and gradual transitions between shots using a single technique, rather than a set of dedicated methods. Results on videos of various content types are reported and validate the proposed approach

    Methods and Apparatus for Autonomous Robotic Control

    Get PDF
    Sensory processing of visual, auditory, and other sensor information (e.g., visual imagery, LIDAR, RADAR) is conventionally based on "stovepiped," or isolated processing, with little interactions between modules. Biological systems, on the other hand, fuse multi-sensory information to identify nearby objects of interest more quickly, more efficiently, and with higher signal-to-noise ratios. Similarly, examples of the OpenSense technology disclosed herein use neurally inspired processing to identify and locate objects in a robot's environment. This enables the robot to navigate its environment more quickly and with lower computational and power requirements

    Putting culture under the spotlight reveals universal information use for face recognition

    Get PDF
    Background: Eye movement strategies employed by humans to identify conspecifics are not universal. Westerners predominantly fixate the eyes during face recognition, whereas Easterners more the nose region, yet recognition accuracy is comparable. However, natural fixations do not unequivocally represent information extraction. So the question of whether humans universally use identical facial information to recognize faces remains unresolved. Methodology/Principal Findings: We monitored eye movements during face recognition of Western Caucasian (WC) and East Asian (EA) observers with a novel technique in face recognition that parametrically restricts information outside central vision. We used ‘Spotlights’ with Gaussian apertures of 2°, 5° or 8° dynamically centered on observers’ fixations. Strikingly, in constrained Spotlight conditions (2°, 5°) observers of both cultures actively fixated the same facial information: the eyes and mouth. When information from both eyes and mouth was simultaneously available when fixating the nose (8°), as expected EA observers shifted their fixations towards this region. Conclusions/Significance: Social experience and cultural factors shape the strategies used to extract information from faces, but these results suggest that external forces do not modulate information use. Human beings rely on identical facial information to recognize conspecifics, a universal law that might be dictated by the evolutionary constraints of nature and not nurture

    A space-variant visual pathway model for data efficient deep learning

    Get PDF
    We present an investigation into adopting a model of the retino-cortical mapping, found in biological visual systems, to improve the efficiency of image analysis using Deep Convolutional Neural Nets (DCNNs) in the context of robot vision and egocentric perception systems. This work has now enabled DCNNs to process input images approaching one million pixels in size, in real time, using only consumer grade graphics processor (GPU) hardware in a single pass of the DCNN
    corecore