6,081 research outputs found

    A Survey on Behavioral Pattern Mining from Sensor Data in Internet of Things

    Get PDF
    The deployment of large-scale wireless sensor networks (WSNs) for the Internet of Things (IoT) applications is increasing day-by-day, especially with the emergence of smart city services. The sensor data streams generated from these applications are largely dynamic, heterogeneous, and often geographically distributed over large areas. For high-value use in business, industry and services, these data streams must be mined to extract insightful knowledge, such as about monitoring (e.g., discovering certain behaviors over a deployed area) or network diagnostics (e.g., predicting faulty sensor nodes). However, due to the inherent constraints of sensor networks and application requirements, traditional data mining techniques cannot be directly used to mine IoT data streams efficiently and accurately in real-time. In the last decade, a number of works have been reported in the literature proposing behavioral pattern mining algorithms for sensor networks. This paper presents the technical challenges that need to be considered for mining sensor data. It then provides a thorough review of the mining techniques proposed in the recent literature to mine behavioral patterns from sensor data in IoT, and their characteristics and differences are highlighted and compared. We also propose a behavioral pattern mining framework for IoT and discuss possible future research directions in this area. © 2013 IEEE

    Wireless sensor data processing for on-site emergency response

    Get PDF
    This thesis is concerned with the problem of processing data from Wireless Sensor Networks (WSNs) to meet the requirements of emergency responders (e.g. Fire and Rescue Services). A WSN typically consists of spatially distributed sensor nodes to cooperatively monitor the physical or environmental conditions. Sensor data about the physical or environmental conditions can then be used as part of the input to predict, detect, and monitor emergencies. Although WSNs have demonstrated their great potential in facilitating Emergency Response, sensor data cannot be interpreted directly due to its large volume, noise, and redundancy. In addition, emergency responders are not interested in raw data, they are interested in the meaning it conveys. This thesis presents research on processing and combining data from multiple types of sensors, and combining sensor data with other relevant data, for the purpose of obtaining data of greater quality and information of greater relevance to emergency responders. The current theory and practice in Emergency Response and the existing technology aids were reviewed to identify the requirements from both application and technology perspectives (Chapter 2). The detailed process of information extraction from sensor data and sensor data fusion techniques were reviewed to identify what constitutes suitable sensor data fusion techniques and challenges presented in sensor data processing (Chapter 3). A study of Incident Commanders’ requirements utilised a goal-driven task analysis method to identify gaps in current means of obtaining relevant information during response to fire emergencies and a list of opportunities for WSN technology to fill those gaps (Chapter 4). A high-level Emergency Information Management System Architecture was proposed, including the main components that are needed, the interaction between components, and system function specification at different incident stages (Chapter 5). A set of state-awareness rules was proposed, and integrated with Kalman Filter to improve the performance of filtering. The proposed data pre-processing approach achieved both improved outlier removal and quick detection of real events (Chapter 6). A data storage mechanism was proposed to support timely response to queries regardless of the increase in volume of data (Chapter 7). What can be considered as “meaning” (e.g. events) for emergency responders were identified and a generic emergency event detection model was proposed to identify patterns presenting in sensor data and associate patterns with events (Chapter 8). In conclusion, the added benefits that the technical work can provide to the current Emergency Response is discussed and specific contributions and future work are highlighted (Chapter 9)

    Big Data Analysis-based Security Situational Awareness for Smart Grid

    Get PDF
    Advanced communications and data processing technologies bring great benefits to the smart grid. However, cyber-security threats also extend from the information system to the smart grid. The existing security works for smart grid focus on traditional protection and detection methods. However, a lot of threats occur in a very short time and overlooked by exiting security components. These threats usually have huge impacts on smart gird and disturb its normal operation. Moreover, it is too late to take action to defend against the threats once they are detected, and damages could be difficult to repair. To address this issue, this paper proposes a security situational awareness mechanism based on the analysis of big data in the smart grid. Fuzzy cluster based analytical method, game theory and reinforcement learning are integrated seamlessly to perform the security situational analysis for the smart grid. The simulation and experimental results show the advantages of our scheme in terms of high efficiency and low error rate for security situational awareness

    Uncertainty Management of Intelligent Feature Selection in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are envisioned to revolutionize the paradigm of monitoring complex real-world systems at a very high resolution. However, the deployment of a large number of unattended sensor nodes in hostile environments, frequent changes of environment dynamics, and severe resource constraints pose uncertainties and limit the potential use of WSN in complex real-world applications. Although uncertainty management in Artificial Intelligence (AI) is well developed and well investigated, its implications in wireless sensor environments are inadequately addressed. This dissertation addresses uncertainty management issues of spatio-temporal patterns generated from sensor data. It provides a framework for characterizing spatio-temporal pattern in WSN. Using rough set theory and temporal reasoning a novel formalism has been developed to characterize and quantify the uncertainties in predicting spatio-temporal patterns from sensor data. This research also uncovers the trade-off among the uncertainty measures, which can be used to develop a multi-objective optimization model for real-time decision making in sensor data aggregation and samplin

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Communication Theoretic Data Analytics

    Full text link
    Widespread use of the Internet and social networks invokes the generation of big data, which is proving to be useful in a number of applications. To deal with explosively growing amounts of data, data analytics has emerged as a critical technology related to computing, signal processing, and information networking. In this paper, a formalism is considered in which data is modeled as a generalized social network and communication theory and information theory are thereby extended to data analytics. First, the creation of an equalizer to optimize information transfer between two data variables is considered, and financial data is used to demonstrate the advantages. Then, an information coupling approach based on information geometry is applied for dimensionality reduction, with a pattern recognition example to illustrate the effectiveness. These initial trials suggest the potential of communication theoretic data analytics for a wide range of applications.Comment: Published in IEEE Journal on Selected Areas in Communications, Jan. 201
    • …
    corecore