245 research outputs found

    A Comprehensive Approach to WSN-Based ITS Applications: A Survey

    Get PDF
    In order to perform sensing tasks, most current Intelligent Transportation Systems (ITS) rely on expensive sensors, which offer only limited functionality. A more recent trend consists of using Wireless Sensor Networks (WSN) for such purpose, which reduces the required investment and enables the development of new collaborative and intelligent applications that further contribute to improve both driving safety and traffic efficiency. This paper surveys the application of WSNs to such ITS scenarios, tackling the main issues that may arise when developing these systems. The paper is divided into sections which address different matters including vehicle detection and classification as well as the selection of appropriate communication protocols, network architecture, topology and some important design parameters. In addition, in line with the multiplicity of different technologies that take part in ITS, it does not consider WSNs just as stand-alone systems, but also as key components of heterogeneous systems cooperating along with other technologies employed in vehicular scenarios

    Content Downloading with the Assistance of Roadside Cars for Vehicular Ad Hoc Networks

    Get PDF

    A Survey of Smart Parking Solutions

    Get PDF
    International audienceConsidering the increase of urban population and traffic congestion, smart parking is always a strategic issue to work on, not only in the research field but also from economic interests. Thanks to information and communication technology evolution, drivers can more efficiently find satisfying parking spaces with smart parking services. The existing and ongoing works on smart parking are complicated and transdisciplinary. While deploying a smart parking system, cities, as well as urban engineers, need to spend a very long time to survey and inspect all the possibilities. Moreover, many varied works involve multiple disciplines, which are closely linked and inseparable. To give a clear overview, we introduce a smart parking ecosystem and propose a comprehensive and thoughtful classification by identifying their functionalities and problematic focuses. We go through the literature over the period of 2000-2016 on parking solutions as they were applied to smart parking development and evolution, and propose three macro-themes: information collection, system deployment, and service dissemination. In each macro-theme, we explain and synthesize the main methodologies used in the existing works and summarize their common goals and visions to solve current parking difficulties. Lastly, we give our engineering insights and show some challenges and open issues. Our survey gives an exhaustive study and a prospect in a multidisciplinary approach. Besides, the main findings of the current state-of-the-art throw out recommendations for future research on smart cities and the Internet architecture

    Secure and Authenticated Message Dissemination in Vehicular ad hoc Networks and an Incentive-Based Architecture for Vehicular Cloud

    Get PDF
    Vehicular ad hoc Networks (VANETs) allow vehicles to form a self-organized network. VANETs are likely to be widely deployed in the future, given the interest shown by industry in self-driving cars and satisfying their customers various interests. Problems related to Mobile ad hoc Networks (MANETs) such as routing, security, etc.have been extensively studied. Even though VANETs are special type of MANETs, solutions proposed for MANETs cannot be directly applied to VANETs because all problems related to MANETs have been studied for small networks. Moreover, in MANETs, nodes can move randomly. On the other hand, movement of nodes in VANETs are constrained to roads and the number of nodes in VANETs is large and covers typically large area. The following are the contributions of the thesis. Secure, authenticated, privacy preserving message dissemination in VANETs: When vehicles in VANET observe phenomena such as accidents, icy road condition, etc., they need to disseminate this information to vehicles in appropriate areas so the drivers of those vehicles can take appropriate action. When such messages are disseminated, the authenticity of the vehicles disseminating such messages should be verified while at the same time the anonymity of the vehicles should be preserved. Moreover, to punish the vehicles spreading malicious messages, authorities should be able to trace such messages to their senders when necessary. For this, we present an efficient protocol for the dissemination of authenticated messages. Incentive-based architecture for vehicular cloud: Due to the advantages such as exibility and availability, interest in cloud computing has gained lot of attention in recent years. Allowing vehicles in VANETs to store the collected information in the cloud would facilitate other vehicles to retrieve this information when they need. In this thesis, we present a secure incentive-based architecture for vehicular cloud. Our architecture allows vehicles to collect and store information in the cloud; it also provides a mechanism for rewarding vehicles that contributing to the cloud. Privacy preserving message dissemination in VANETs: Sometimes, it is sufficient to ensure the anonymity of the vehicles disseminating messages in VANETs. We present a privacy preserving message dissemination protocol for VANETs

    Cloud Computing in VANETs: Architecture, Taxonomy, and Challenges

    Get PDF
    Cloud Computing in VANETs (CC-V) has been investigated into two major themes of research including Vehicular Cloud Computing (VCC) and Vehicle using Cloud (VuC). VCC is the realization of autonomous cloud among vehicles to share their abundant resources. VuC is the efficient usage of conventional cloud by on-road vehicles via a reliable Internet connection. Recently, number of advancements have been made to address the issues and challenges in VCC and VuC. This paper qualitatively reviews CC-V with the emphasis on layered architecture, network component, taxonomy, and future challenges. Specifically, a four-layered architecture for CC-V is proposed including perception, co-ordination, artificial intelligence and smart application layers. Three network component of CC-V namely, vehicle, connection and computation are explored with their cooperative roles. A taxonomy for CC-V is presented considering major themes of research in the area including design of architecture, data dissemination, security, and applications. Related literature on each theme are critically investigated with comparative assessment of recent advances. Finally, some open research challenges are identified as future issues. The challenges are the outcome of the critical and qualitative assessment of literature on CC-V

    Vehicular Networks with Infrastructure: Modeling, Simulation and Testbed

    Get PDF
    This thesis focuses on Vehicular Networks with Infrastructure. In the examined scenarios, vehicular nodes (e.g., cars, buses) can communicate with infrastructure roadside units (RSUs) providing continuous or intermittent coverage of an urban road topology. Different aspects related to the design of new applications for Vehicular Networks are investigated through modeling, simulation and testing on real field. In particular, the thesis: i) provides a feasible multi-hop routing solution for maintaining connectivity among RSUs, forming the wireless mesh infrastructure, and moving vehicles; ii) explains how to combine the UHF and the traditional 5-GHz bands to design and implement a new high-capacity high-efficiency Content Downloading using disjoint control and service channels; iii) studies new RSUs deployment strategies for Content Dissemination and Downloading in urban and suburban scenarios with different vehicles mobility models and traffic densities; iv) defines an optimization problem to minimize the average travel delay perceived by the drivers, spreading different traffic flows over the surface roads in a urban scenario; v) exploits the concept of Nash equilibrium in the game-theory approach to efficiently guide electric vehicles drivers' towards the charging stations. Moreover, the thesis emphasizes the importance of using realistic mobility models, as well as reasonable signal propagation models for vehicular networks. Simplistic assumptions drive to trivial mathematical analysis and shorter simulations, but they frequently produce misleading results. Thus, testing the proposed solutions in the real field and collecting measurements is a good way to double-check the correctness of our studie
    • …
    corecore