379 research outputs found

    Secure Surveillance Framework for IoT Systems Using Probabilistic Image Encryption

    Full text link
    [EN] This paper proposes a secure surveillance framework for Internet of things (IoT) systems by intelligent integration of video summarization and image encryption. First, an efficient video summarization method is used to extract the informative frames using the processing capabilities of visual sensors. When an event is detected from keyframes, an alert is sent to the concerned authority autonomously. As the final decision about an event mainly depends on the extracted keyframes, their modification during transmission by attackers can result in severe losses. To tackle this issue, we propose a fast probabilistic and lightweight algorithm for the encryption of keyframes prior to transmission, considering the memory and processing requirements of constrained devices that increase its suitability for IoT systems. Our experimental results verify the effectiveness of the proposed method in terms of robustness, execution time, and security compared to other image encryption algorithms. Furthermore, our framework can reduce the bandwidth, storage, transmission cost, and the time required for analysts to browse large volumes of surveillance data and make decisions about abnormal events, such as suspicious activity detection and fire detection in surveillance applications.This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1A2B4011712). Paper no. TII-17-2066.Muhammad, K.; Hamza, R.; Ahmad, J.; Lloret, J.; Wang, H.; Baik, SW. (2018). Secure Surveillance Framework for IoT Systems Using Probabilistic Image Encryption. IEEE Transactions on Industrial Informatics. 14(8):3679-3689. https://doi.org/10.1109/TII.2018.2791944S3679368914

    Deep Features and Clustering Based Keyframes Selection with Security

    Get PDF
    The digital world is developing more quickly than ever. Multimedia processing and distribution, however become vulnerable issues due to the enormous quantity and significance of vital information. Therefore, extensive technologies and algorithms are required for the safe transmission of messages, images, and video files. This paper proposes a secure framework by acute integration of video summarization and image encryption. Three parts comprise the proposed cryptosystem framework. The informative frames are first extracted using an efficient and lightweight technique that make use of the color histogram-clustering (RGB-HSV) approach's processing capabilities. Each frame of a video is represented by deep features, which are based on an enhanced pre-trained Inception-v3 network. After that summary is obtain using the K-means optimal clustering algorithm. The representative keyframes then extracted using the clusters highest possible entropy nodes. Experimental validation on two well-known standard datasets demonstrates the proposed methods superiority to numerous state-of-the-art approaches. Finally, the proposed framework performs an efficient image encryption and decryption algorithm by employing a general linear group function GLn (F). The analysis and testing outcomes prove the superiority of the proposed adaptive RSA

    Camera Based Smart Surveillance System

    Get PDF
    This paper is the survey of Smart camera based surveillance monitoring system using Raspberry pi. Camera based surveillance is important in all sectors, they can be colleges and hospitals, shopping malls and other challenging indoor and outdoor environments require high end cameras. This paper focus on low-cost project on single board computer Raspberry Pi. This is new technology and far less expensive and, it is being used as a main platform for video detection and acquisition. It can be used with involvement of mobile network (internet) to provide essential security and surveillance to our properties and for other control applications. The security system records information and transmits it via network to a Smart Phone using web application Raspberry pi

    Biometrics for internet‐of‐things security: A review

    Get PDF
    The large number of Internet‐of‐Things (IoT) devices that need interaction between smart devices and consumers makes security critical to an IoT environment. Biometrics offers an interesting window of opportunity to improve the usability and security of IoT and can play a significant role in securing a wide range of emerging IoT devices to address security challenges. The purpose of this review is to provide a comprehensive survey on the current biometrics research in IoT security, especially focusing on two important aspects, authentication and encryption. Regarding authentication, contemporary biometric‐based authentication systems for IoT are discussed and classified based on different biometric traits and the number of biometric traits employed in the system. As for encryption, biometric‐cryptographic systems, which integrate biometrics with cryptography and take advantage of both to provide enhanced security for IoT, are thoroughly reviewed and discussed. Moreover, challenges arising from applying biometrics to IoT and potential solutions are identified and analyzed. With an insight into the state‐of‐the‐art research in biometrics for IoT security, this review paper helps advance the study in the field and assists researchers in gaining a good understanding of forward‐looking issues and future research directions

    Multimedia security and privacy protection in the internet of things: research developments and challenges

    Get PDF
    With the rapid growth of the internet of things (IoT), huge amounts of multimedia data are being generated from and/or exchanged through various IoT devices, systems and applications. The security and privacy of multimedia data have, however, emerged as key challenges that have the potential to impact the successful deployment of IoT devices in some data-sensitive applications. In this paper, we conduct a comprehensive survey on multimedia data security and privacy protection in the IoT. First, we classify multimedia data into different types and security levels according to application areas. Then, we analyse and discuss the existing multimedia data protection schemes in the IoT, including traditional techniques (e.g., cryptography and watermarking) and emerging technologies (e.g., blockchain and federated learning). Based on the detailed analysis on the research development of IoT-related multimedia security and privacy protection, we point out some open challenges and provide future research directions, aiming to advance the study in the relevant fields and assist researchers in gaining a deeper understanding of the state of the art on multimedia data protection in the IoT

    IoT-Enabled Smart Healthcare Infrastructure Maximises Energy Efficiency

    Get PDF
    Advancements in IoT-based applications have become the cutting-edge technology among researchers due to the wide availability of the Internet. In order to make the application more user-friendly, Android-based and Web-based technologies have become increasingly important in this cutting-edge technology. Smart cities, Internet of Things(IoT), Smart health care systems are the technology of the future. A combination of numerous systems focusing on monitoring different components of the smart city (such as water, e-health, gas,  power monitoring and emergency scenario detection) can be used to make the city more sustainable and secure. In smart cities, energy consumption is particularly important for e-health. An optimization approach is provided in this paper to reduce total network energy usage. When compared to previous methods, the overall performance has improved by 57.89%

    Secure Communication in wise Homes using IoT

    Get PDF
    The advancement of the Internet of Things has madeextraordinary progress in recent years in academic as well as industrial fields. There are quite a few wise home systems (WHSs) that have been developed by major companies to achieve home automation. However, the nature of wise homesinescapable raises security and privacy concerns. In this paper, we propose an improved energy-efficient, secure, and privacy-preserving com-munication protocol for the WHSs. In our proposed scheme, data transmissions within the WHS are secured by a symmetric encryption scheme with secret keys being generated by anarchicsystems. Meanwhile, we incorporate message authentication codes to our scheme to guarantee data integrity and authenticity. We also provide detailed security analysis and performance evaluation in comparison with our previous work in terms of computational complexity, memory cost, and communication overhead

    Robust video data security using hybrid cryptography-steganography technique

    Get PDF
    The interest in the digital videos confidentiality in the current electronic and interrelated world has increased. Thus, this paper aimed at making a video steganography scheme for an acceptable security with high speed of calculation by embedding data (video frames) in other video frames. The techniques of embedding and encrypting video frames in a cover video file were done through two ways. Firstly, two keys and XOR bit operation were employed to create a large range of different keys for encryption. Secondly, a modified method of Least Significant Bit (LSB) technique was used for hiding high resolution video frames (bitmap color) in selective cover video frames, offering two security layers. The procedures of encrypting and hiding video data were successfully tested on many secret videos such ad Eye Video, Secret Medicine Video and Traffic Video. All experiments were conducted using MATLAB-GUI software, representing an efficient and easy tool for video management supported by powerful testing tools as histograms and mathematics for video quality. Experimental result demonstrated a good performance with low correlation and very high PSNR of the Stego video frames
    • 

    corecore