3,006 research outputs found

    ON THE UNIVERSAL TREE MODE OF HASH CODE GENERATION

    Get PDF
    Classical approaches to the construction of hash function modes, based on the using of iterative procedures, do not allow efficient processing of large amounts of data and can’t be adapted to parallel computing architectures. It applies to both the Russian cryptographic standard GOST R 34.11-2012, which determines the algorithm and procedure for calculating the hash function, as well as many other foreign standards (for example, SHA-3). The absence of standards for parallelized modes for the hash functions of GOST R 34.11-2012 creates an urgent need for the development of the domestic standard of the parallelized mode of hash code. This article is devoted to the research and development of new modes of hash code generation that allow efficient parallelization of the computation process and provide cryptographic resistance satisfying modern requirements. This work continues the research carried out by the authors, and offers a fundamentally new tree mode of hash code generation ("FT-mode"), based on l-ary hash trees and allowed to use any compression mapping for a mechanism of forming tree nodes. The resistance of the mode is completely determined by the resistance of the corresponding compressive mapping. In particular, the FT-mode allows using block ciphers and substitution transformations to form nodes of a hash tree along with compression functions and hash functions. In addition, the FT-mode excludes the main functional disadvantages of the known tree modes of hash code generation that affect their operational, technical and cryptographic quality. Within the framework of the present research a number of characteristics of FT-mode are calculated, and a comparative analysis of the time and computational complexity of implementations of FT-mode and some foreign tree hash modes is carried out. The corresponding results showed that the developed mode is not inferior to any of the considered modes

    Computational and Energy Costs of Cryptographic Algorithms on Handheld Devices

    Get PDF
    Networks are evolving toward a ubiquitous model in which heterogeneous devices are interconnected. Cryptographic algorithms are required for developing security solutions that protect network activity. However, the computational and energy limitations of network devices jeopardize the actual implementation of such mechanisms. In this paper, we perform a wide analysis on the expenses of launching symmetric and asymmetric cryptographic algorithms, hash chain functions, elliptic curves cryptography and pairing based cryptography on personal agendas, and compare them with the costs of basic operating system functions. Results show that although cryptographic power costs are high and such operations shall be restricted in time, they are not the main limiting factor of the autonomy of a device

    Optimization of Tree Modes for Parallel Hash Functions: A Case Study

    Full text link
    This paper focuses on parallel hash functions based on tree modes of operation for an inner Variable-Input-Length function. This inner function can be either a single-block-length (SBL) and prefix-free MD hash function, or a sponge-based hash function. We discuss the various forms of optimality that can be obtained when designing parallel hash functions based on trees where all leaves have the same depth. The first result is a scheme which optimizes the tree topology in order to decrease the running time. Then, without affecting the optimal running time we show that we can slightly change the corresponding tree topology so as to minimize the number of required processors as well. Consequently, the resulting scheme decreases in the first place the running time and in the second place the number of required processors.Comment: Preprint version. Added citations, IEEE Transactions on Computers, 201

    A Meaningful MD5 Hash Collision Attack

    Get PDF
    It is now proved by Wang et al., that MD5 hash is no more secure, after they proposed an attack that would generate two different messages that gives the same MD5 sum. Many conditions need to be satisfied to attain this collision. Vlastimil Klima then proposed a more efficient and faster technique to implement this attack. We use these techniques to first create a collision attack and then use these collisions to implement meaningful collisions by creating two different packages that give identical MD5 hash, but when extracted, each gives out different files with contents specified by the atacker

    Efficient hardware implementations of high throughput SHA-3 candidates keccak, luffa and blue midnight wish for single- and multi-message hashing

    Get PDF
    In November 2007 NIST announced that it would organize the SHA-3 competition to select a new cryptographic hash function family by 2012. In the selection process, hardware performances of the candidates will play an important role. Our analysis of previously proposed hardware implementations shows that three SHA-3 candidate algorithms can provide superior performance in hardware: Keccak, Luffa and Blue Midnight Wish (BMW). In this paper, we provide efficient and fast hardware implementations of these three algorithms. Considering both single- and multi-message hashing applications with an emphasis on both speed and efficiency, our work presents more comprehensive analysis of their hardware performances by providing different performance figures for different target devices. To our best knowledge, this is the first work that provides a comparative analysis of SHA-3 candidates in multi-message applications. We discover that BMW algorithm can provide much higher throughput than previously reported if used in multi-message hashing. We also show that better utilization of resources can increase speed via different configurations. We implement our designs using Verilog HDL, and map to both ASIC and FPGA devices (Spartan3, Virtex2, and Virtex 4) to give a better comparison with those in the literature. We report total area, maximum frequency, maximum throughput and throughput/area of the designs for all target devices. Given that the selection process for SHA3 is still open; our results will be instrumental to evaluate the hardware performance of the candidates

    Cryptography from Information Loss

    Get PDF
    © Marshall Ball, Elette Boyle, Akshay Degwekar, Apoorvaa Deshpande, Alon Rosen, Vinod. Reductions between problems, the mainstay of theoretical computer science, efficiently map an instance of one problem to an instance of another in such a way that solving the latter allows solving the former.1 The subject of this work is “lossy” reductions, where the reduction loses some information about the input instance. We show that such reductions, when they exist, have interesting and powerful consequences for lifting hardness into “useful” hardness, namely cryptography. Our first, conceptual, contribution is a definition of lossy reductions in the language of mutual information. Roughly speaking, our definition says that a reduction C is t-lossy if, for any distribution X over its inputs, the mutual information I(X; C(X)) ≤ t. Our treatment generalizes a variety of seemingly related but distinct notions such as worst-case to average-case reductions, randomized encodings (Ishai and Kushilevitz, FOCS 2000), homomorphic computations (Gentry, STOC 2009), and instance compression (Harnik and Naor, FOCS 2006). We then proceed to show several consequences of lossy reductions: 1. We say that a language L has an f-reduction to a language L0 for a Boolean function f if there is a (randomized) polynomial-time algorithm C that takes an m-tuple of strings X = (x1, . . ., xm), with each xi ∈ {0, 1}n, and outputs a string z such that with high probability, L0(z) = f(L(x1), L(x2), . . ., L(xm)) Suppose a language L has an f-reduction C to L0 that is t-lossy. Our first result is that one-way functions exist if L is worst-case hard and one of the following conditions holds: f is the OR function, t ≤ m/100, and L0 is the same as L f is the Majority function, and t ≤ m/100 f is the OR function, t ≤ O(m log n), and the reduction has no error This improves on the implications that follow from combining (Drucker, FOCS 2012) with (Ostrovsky and Wigderson, ISTCS 1993) that result in auxiliary-input one-way functions. 2. Our second result is about the stronger notion of t-compressing f-reductions – reductions that only output t bits. We show that if there is an average-case hard language L that has a t-compressing Majority reduction to some language for t = m/100, then there exist collision-resistant hash functions. This improves on the result of (Harnik and Naor, STOC 2006), whose starting point is a cryptographic primitive (namely, one-way functions) rather than average-case hardness, and whose assumption is a compressing OR-reduction of SAT (which is now known to be false unless the polynomial hierarchy collapses). Along the way, we define a non-standard one-sided notion of average-case hardness, which is the notion of hardness used in the second result above, that may be of independent interest
    corecore