9,978 research outputs found

    Probabilistic Interpretation of Linear Solvers

    Full text link
    This manuscript proposes a probabilistic framework for algorithms that iteratively solve unconstrained linear problems Bx=bBx = b with positive definite BB for xx. The goal is to replace the point estimates returned by existing methods with a Gaussian posterior belief over the elements of the inverse of BB, which can be used to estimate errors. Recent probabilistic interpretations of the secant family of quasi-Newton optimization algorithms are extended. Combined with properties of the conjugate gradient algorithm, this leads to uncertainty-calibrated methods with very limited cost overhead over conjugate gradients, a self-contained novel interpretation of the quasi-Newton and conjugate gradient algorithms, and a foundation for new nonlinear optimization methods.Comment: final version, in press at SIAM J Optimizatio

    Composing Scalable Nonlinear Algebraic Solvers

    Get PDF
    Most efficient linear solvers use composable algorithmic components, with the most common model being the combination of a Krylov accelerator and one or more preconditioners. A similar set of concepts may be used for nonlinear algebraic systems, where nonlinear composition of different nonlinear solvers may significantly improve the time to solution. We describe the basic concepts of nonlinear composition and preconditioning and present a number of solvers applicable to nonlinear partial differential equations. We have developed a software framework in order to easily explore the possible combinations of solvers. We show that the performance gains from using composed solvers can be substantial compared with gains from standard Newton-Krylov methods.Comment: 29 pages, 14 figures, 13 table

    Adaptive Momentum for Neural Network Optimization

    Get PDF
    In this thesis, we develop a novel and efficient algorithm for optimizing neural networks inspired by a recently proposed geodesic optimization algorithm. Our algorithm, which we call Stochastic Geodesic Optimization (SGeO), utilizes an adaptive coefficient on top of Polyaks Heavy Ball method effectively controlling the amount of weight put on the previous update to the parameters based on the change of direction in the optimization path. Experimental results on strongly convex functions with Lipschitz gradients and deep Autoencoder benchmarks show that SGeO reaches lower errors than established first-order methods and competes well with lower or similar errors to a recent second-order method called K-FAC (Kronecker-Factored Approximate Curvature). We also incorporate Nesterov style lookahead gradient into our algorithm (SGeO-N) and observe notable improvements. We believe that our research will open up new directions for high-dimensional neural network optimization where combining the efficiency of first-order methods and the effectiveness of second-order methods proves a promising avenue to explore

    Training feedforward neural networks using orthogonal iteration of the Hessian eigenvectors

    Get PDF
    Introduction Training algorithms for Multilayer Perceptrons optimize the set of W weights and biases, w, so as to minimize an error function, E, applied to a set of N training patterns. The well-known back propagation algorithm combines an efficient method of estimating the gradient of the error function in weight space, DE=g, with a simple gradient descent procedure to adjust the weights, Dw = -hg. More efficient algorithms maintain the gradient estimation procedure, but replace the update step with a faster non-linear optimization strategy [1]. Efficient non-linear optimization algorithms are based upon second order approximation [2]. When sufficiently close to a minimum the error surface is approximately quadratic, the shape being determined by the Hessian matrix. Bishop [1] presents a detailed discussion of the properties and significance of the Hessian matrix. In principle, if sufficiently close to a minimum it is possible to move directly to the minimum using the Newton step, -H-1g. In practice, the Newton step is not used as H-1 is very expensive to evaluate; in addition, when not sufficiently close to a minimum, the Newton step may cause a disastrously poor step to be taken. Second order algorithms either build up an approximation to H-1, or construct a search strategy that implicitly exploits its structure without evaluating it; they also either take precautions to prevent steps that lead to a deterioration in error, or explicitly reject such steps. In applying non-linear optimization algorithms to neural networks, a key consideration is the high-dimensional nature of the search space. Neural networks with thousands of weights are not uncommon. Some algorithms have O(W2) or O(W3) memory or execution times, and are hence impracticable in such cases. It is desirable to identify algorithms that have limited memory requirements, particularly algorithms where one may trade memory usage against convergence speed. The paper describes a new training algorithm that has scalable memory requirements, which may range from O(W) to O(W2), although in practice the useful range is limited to lower complexity levels. The algorithm is based upon a novel iterative estimation of the principal eigen-subspace of the Hessian, together with a quadratic step estimation procedure. It is shown that the new algorithm has convergence time comparable to conjugate gradient descent, and may be preferable if early stopping is used as it converges more quickly during the initial phases. Section 2 overviews the principles of second order training algorithms. Section 3 introduces the new algorithm. Second 4 discusses some experiments to confirm the algorithm's performance; section 5 concludes the paper
    • …
    corecore