97 research outputs found

    Methods and models for safety benefit assessment of advanced driver assistance systems in car-to-cyclist conflicts

    Get PDF
    To help drivers avoid or mitigate the severity of crashes, advanced driver assistance systems (ADAS) can be designed to provide warnings or interventions. Prospective safety assessment of ADAS is important to quantify and optimise their safety benefit. Such safety assessment methods include, for example, virtual simulations and test-track testing.Today, there are many components of virtual safety assessment simulations with models or methods that are missing or can be substantially improved. This is particularly true for simulations assessing ADASs that address crashes involving cyclists—a crash type that is not decreasing at the same rate as the overall number of road crashes in Europe. The specific methodological gaps that this work addresses are: a) computational driver models for car-to-cyclist overtaking, b) algorithms for model fitting and efficient calculation of ADAS intervention time, and c) a method for merging data from different data sources into the safety assessment.Specifically, for a), different driver models for everyday driver behaviour while overtaking cyclists in a naturalistic driving setting were derived and compared. For b), computationally efficient algorithms to fit driver models to data and compute ADAS intervention time were developed for different types of vehicle models. The algorithms can be included in ADAS both for offline use in virtual assessment simulations and online real-time use in in-vehicle ADAS. Lastly, for c), a method was developed that uses Bayesian statistics to combine results from different data sources, e.g., simulations and test-track data, for ADAS safety benefit assessment.In addition to presenting five peer-reviewed scientific publications, which address these issues, this compilation thesis discusses the use of different data sources; introduces the fundamentals of Bayesian inference, linear programming, and numerical root-finding algorithms; and provides the rationale for methodological choices made, where relevant. Finally, this thesis describes the relationships among the publications and places them into context with existing literature.This work developed driver models for the virtual simulations and methods for the reliable estimation of the prospective safety benefit, which together have the potential to improve the design and the evaluation of ADAS in general, and ADAS for the car-to-cyclist overtaking scenario in particular

    AI on the Road: A Comprehensive Analysis of Traffic Accidents and Accident Detection System in Smart Cities

    Full text link
    Accident detection and traffic analysis is a critical component of smart city and autonomous transportation systems that can reduce accident frequency, severity and improve overall traffic management. This paper presents a comprehensive analysis of traffic accidents in different regions across the United States using data from the National Highway Traffic Safety Administration (NHTSA) Crash Report Sampling System (CRSS). To address the challenges of accident detection and traffic analysis, this paper proposes a framework that uses traffic surveillance cameras and action recognition systems to detect and respond to traffic accidents spontaneously. Integrating the proposed framework with emergency services will harness the power of traffic cameras and machine learning algorithms to create an efficient solution for responding to traffic accidents and reducing human errors. Advanced intelligence technologies, such as the proposed accident detection systems in smart cities, will improve traffic management and traffic accident severity. Overall, this study provides valuable insights into traffic accidents in the US and presents a practical solution to enhance the safety and efficiency of transportation systems.Comment: 8,

    Driver-centric Risk Object Identification

    Full text link
    A massive number of traffic fatalities are due to driver errors. To reduce fatalities, developing intelligent driving systems assisting drivers to identify potential risks is in urgent need. Risky situations are generally defined based on collision prediction in existing research. However, collisions are only one type of risk in traffic scenarios. We believe a more generic definition is required. In this work, we propose a novel driver-centric definition of risk, i.e., risky objects influence driver behavior. Based on this definition, a new task called risk object identification is introduced. We formulate the task as a cause-effect problem and present a novel two-stage risk object identification framework, taking inspiration from models of situation awareness and causal inference. A driver-centric Risk Object Identification (ROI) dataset is curated to evaluate the proposed system. We demonstrate state-of-the-art risk object identification performance compared with strong baselines on the ROI dataset. In addition, we conduct extensive ablative studies to justify our design choices.Comment: Submitted to TPAM
    corecore