2,053 research outputs found

    Towards an Adaptive Skeleton Framework for Performance Portability

    Get PDF
    The proliferation of widely available, but very different, parallel architectures makes the ability to deliver good parallel performance on a range of architectures, or performance portability, highly desirable. Irregularly-parallel problems, where the number and size of tasks is unpredictable, are particularly challenging and require dynamic coordination. The paper outlines a novel approach to delivering portable parallel performance for irregularly parallel programs. The approach combines declarative parallelism with JIT technology, dynamic scheduling, and dynamic transformation. We present the design of an adaptive skeleton library, with a task graph implementation, JIT trace costing, and adaptive transformations. We outline the architecture of the protoype adaptive skeleton execution framework in Pycket, describing tasks, serialisation, and the current scheduler.We report a preliminary evaluation of the prototype framework using 4 micro-benchmarks and a small case study on two NUMA servers (24 and 96 cores) and a small cluster (17 hosts, 272 cores). Key results include Pycket delivering good sequential performance e.g. almost as fast as C for some benchmarks; good absolute speedups on all architectures (up to 120 on 128 cores for sumEuler); and that the adaptive transformations do improve performance

    Transducers from Rewrite Rules with Backreferences

    Full text link
    Context sensitive rewrite rules have been widely used in several areas of natural language processing, including syntax, morphology, phonology and speech processing. Kaplan and Kay, Karttunen, and Mohri & Sproat have given various algorithms to compile such rewrite rules into finite-state transducers. The present paper extends this work by allowing a limited form of backreferencing in such rules. The explicit use of backreferencing leads to more elegant and general solutions.Comment: 8 pages, EACL 1999 Berge

    On-stack replacement, distilled

    Get PDF
    On-stack replacement (OSR) is essential technology for adaptive optimization, allowing changes to code actively executing in a managed runtime. The engineering aspects of OSR are well-known among VM architects, with several implementations available to date. However, OSR is yet to be explored as a general means to transfer execution between related program versions, which can pave the road to unprecedented applications that stretch beyond VMs. We aim at filling this gap with a constructive and provably correct OSR framework, allowing a class of general-purpose transformation functions to yield a special-purpose replacement. We describe and evaluate an implementation of our technique in LLVM. As a novel application of OSR, we present a feasibility study on debugging of optimized code, showing how our techniques can be used to fix variables holding incorrect values at breakpoints due to optimizations

    Securing Smart Contract On The Fly

    Full text link
    We present Solythesis, a source to source Solidity compiler which takes a smart contract code and a user specified invariant as the input and produces an instrumented contract that rejects all transactions that violate the invariant. The design of Solythesis is driven by our observation that the consensus protocol and the storage layer are the primary and the secondary performance bottlenecks of Ethereum, respectively. Solythesis operates with our novel delta update and delta check techniques to minimize the overhead caused by the instrumented storage access statements. Our experimental results validate our hypothesis that the overhead of runtime validation, which is often too expensive for other domains, is in fact negligible for smart contracts. The CPU overhead of Solythesis is only 0.12% on average for our 23 benchmark contracts

    Topological Optimization of the Evaluation of Finite Element Matrices

    Full text link
    We present a topological framework for finding low-flop algorithms for evaluating element stiffness matrices associated with multilinear forms for finite element methods posed over straight-sided affine domains. This framework relies on phrasing the computation on each element as the contraction of each collection of reference element tensors with an element-specific geometric tensor. We then present a new concept of complexity-reducing relations that serve as distance relations between these reference element tensors. This notion sets up a graph-theoretic context in which we may find an optimized algorithm by computing a minimum spanning tree. We present experimental results for some common multilinear forms showing significant reductions in operation count and also discuss some efficient algorithms for building the graph we use for the optimization
    corecore