6,185 research outputs found

    Algorithmic patterns for H\mathcal{H}-matrices on many-core processors

    Get PDF
    In this work, we consider the reformulation of hierarchical (H\mathcal{H}) matrix algorithms for many-core processors with a model implementation on graphics processing units (GPUs). H\mathcal{H} matrices approximate specific dense matrices, e.g., from discretized integral equations or kernel ridge regression, leading to log-linear time complexity in dense matrix-vector products. The parallelization of H\mathcal{H} matrix operations on many-core processors is difficult due to the complex nature of the underlying algorithms. While previous algorithmic advances for many-core hardware focused on accelerating existing H\mathcal{H} matrix CPU implementations by many-core processors, we here aim at totally relying on that processor type. As main contribution, we introduce the necessary parallel algorithmic patterns allowing to map the full H\mathcal{H} matrix construction and the fast matrix-vector product to many-core hardware. Here, crucial ingredients are space filling curves, parallel tree traversal and batching of linear algebra operations. The resulting model GPU implementation hmglib is the, to the best of the authors knowledge, first entirely GPU-based Open Source H\mathcal{H} matrix library of this kind. We conclude this work by an in-depth performance analysis and a comparative performance study against a standard H\mathcal{H} matrix library, highlighting profound speedups of our many-core parallel approach

    Gunrock: A High-Performance Graph Processing Library on the GPU

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs have been two significant challenges for developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We evaluate Gunrock on five key graph primitives and show that Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives, and better performance than any other GPU high-level graph library.Comment: 14 pages, accepted by PPoPP'16 (removed the text repetition in the previous version v5

    Gunrock: GPU Graph Analytics

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs, have presented two significant challenges to developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We characterize the performance of various optimization strategies and evaluate Gunrock's overall performance on different GPU architectures on a wide range of graph primitives that span from traversal-based algorithms and ranking algorithms, to triangle counting and bipartite-graph-based algorithms. The results show that on a single GPU, Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives and CPU shared-memory graph libraries such as Ligra and Galois, and better performance than any other GPU high-level graph library.Comment: 52 pages, invited paper to ACM Transactions on Parallel Computing (TOPC), an extended version of PPoPP'16 paper "Gunrock: A High-Performance Graph Processing Library on the GPU

    Symbolic crosschecking of data-parallel floating-point code

    Get PDF

    Performance comparison between Java and JNI for optimal implementation of computational micro-kernels

    Get PDF
    General purpose CPUs used in high performance computing (HPC) support a vector instruction set and an out-of-order engine dedicated to increase the instruction level parallelism. Hence, related optimizations are currently critical to improve the performance of applications requiring numerical computation. Moreover, the use of a Java run-time environment such as the HotSpot Java Virtual Machine (JVM) in high performance computing is a promising alternative. It benefits from its programming flexibility, productivity and the performance is ensured by the Just-In-Time (JIT) compiler. Though, the JIT compiler suffers from two main drawbacks. First, the JIT is a black box for developers. We have no control over the generated code nor any feedback from its optimization phases like vectorization. Secondly, the time constraint narrows down the degree of optimization compared to static compilers like GCC or LLVM. So, it is compelling to use statically compiled code since it benefits from additional optimization reducing performance bottlenecks. Java enables to call native code from dynamic libraries through the Java Native Interface (JNI). Nevertheless, JNI methods are not inlined and require an additional cost to be invoked compared to Java ones. Therefore, to benefit from better static optimization, this call overhead must be leveraged by the amount of computation performed at each JNI invocation. In this paper we tackle this problem and we propose to do this analysis for a set of micro-kernels. Our goal is to select the most efficient implementation considering the amount of computation defined by the calling context. We also investigate the impact on performance of several different optimization schemes which are vectorization, out-of-order optimization, data alignment, method inlining and the use of native memory for JNI methods.Comment: Part of ADAPT Workshop proceedings, 2015 (arXiv:1412.2347

    Efficiently and Transparently Maintaining High SIMD Occupancy in the Presence of Wavefront Irregularity

    Get PDF
    Demand is increasing for high throughput processing of irregular streaming applications; examples of such applications from scientific and engineering domains include biological sequence alignment, network packet filtering, automated face detection, and big graph algorithms. With wide SIMD, lightweight threads, and low-cost thread-context switching, wide-SIMD architectures such as GPUs allow considerable flexibility in the way application work is assigned to threads. However, irregular applications are challenging to map efficiently onto wide SIMD because data-dependent filtering or replication of items creates an unpredictable data wavefront of items ready for further processing. Straightforward implementations of irregular applications on a wide-SIMD architecture are prone to load imbalance and reduced occupancy, while more sophisticated implementations require advanced use of parallel GPU operations to redistribute work efficiently among threads. This dissertation will present strategies for addressing the performance challenges of wavefront- irregular applications on wide-SIMD architectures. These strategies are embodied in a developer framework called Mercator that (1) allows developers to map irregular applications onto GPUs ac- cording to the streaming paradigm while abstracting from low-level data movement and (2) includes generalized techniques for transparently overcoming the obstacles to high throughput presented by wavefront-irregular applications on a GPU. Mercator forms the centerpiece of this dissertation, and we present its motivation, performance model, implementation, and extensions in this work

    Towards an MPI-like Framework for Azure Cloud Platform

    Get PDF
    Message passing interface (MPI) has been widely used for implementing parallel and distributed applications. The emergence of cloud computing offers a scalable, fault-tolerant, on-demand al-ternative to traditional on-premise clusters. In this thesis, we investigate the possibility of adopt-ing the cloud platform as an alternative to conventional MPI-based solutions. We show that cloud platform can exhibit competitive performance and benefit the users of this platform with its fault-tolerant architecture and on-demand access for a robust solution. Extensive research is done to identify the difficulties of designing and implementing an MPI-like framework for Azure cloud platform. We present the details of the key components required for implementing such a framework along with our experimental results for benchmarking multiple basic operations of MPI standard implemented in the cloud and its practical application in solving well-known large-scale algorithmic problems

    C Language Extensions for Hybrid CPU/GPU Programming with StarPU

    Get PDF
    Modern platforms used for high-performance computing (HPC) include machines with both general-purpose CPUs, and "accelerators", often in the form of graphical processing units (GPUs). StarPU is a C library to exploit such platforms. It provides users with ways to define "tasks" to be executed on CPUs or GPUs, along with the dependencies among them, and by automatically scheduling them over all the available processing units. In doing so, it also relieves programmers from the need to know the underlying architecture details: it adapts to the available CPUs and GPUs, and automatically transfers data between main memory and GPUs as needed. While StarPU's approach is successful at addressing run-time scheduling issues, being a C library makes for a poor and error-prone programming interface. This paper presents an effort started in 2011 to promote some of the concepts exported by the library as C language constructs, by means of an extension of the GCC compiler suite. Our main contribution is the design and implementation of language extensions that map to StarPU's task programming paradigm. We argue that the proposed extensions make it easier to get started with StarPU,eliminate errors that can occur when using the C library, and help diagnose possible mistakes. We conclude on future work
    • …
    corecore