64,839 research outputs found

    Fast Robust PCA on Graphs

    Get PDF
    Mining useful clusters from high dimensional data has received significant attention of the computer vision and pattern recognition community in the recent years. Linear and non-linear dimensionality reduction has played an important role to overcome the curse of dimensionality. However, often such methods are accompanied with three different problems: high computational complexity (usually associated with the nuclear norm minimization), non-convexity (for matrix factorization methods) and susceptibility to gross corruptions in the data. In this paper we propose a principal component analysis (PCA) based solution that overcomes these three issues and approximates a low-rank recovery method for high dimensional datasets. We target the low-rank recovery by enforcing two types of graph smoothness assumptions, one on the data samples and the other on the features by designing a convex optimization problem. The resulting algorithm is fast, efficient and scalable for huge datasets with O(nlog(n)) computational complexity in the number of data samples. It is also robust to gross corruptions in the dataset as well as to the model parameters. Clustering experiments on 7 benchmark datasets with different types of corruptions and background separation experiments on 3 video datasets show that our proposed model outperforms 10 state-of-the-art dimensionality reduction models. Our theoretical analysis proves that the proposed model is able to recover approximate low-rank representations with a bounded error for clusterable data

    A Novel Subspace Outlier Detection Approach in High Dimensional Data Sets

    Get PDF
    Many real applications are required to detect outliers in high dimensional data sets. The major difficulty of mining outliers lies on the fact that outliers are often embedded in subspaces. No efficient methods are available in general for subspace-based outlier detection. Most existing subspacebased outlier detection methods identify outliers by searching for abnormal sparse density units in subspaces. In this paper, we present a novel approach for finding outliers in the ‘interesting’ subspaces. The interesting subspaces are strongly correlated with `good\u27 clusters. This approach aims to group the meaningful subspaces and then identify outliers in the projected subspaces. In doing so, an extension to the subspacebased clustering algorithm is proposed so as to find the ‘good’ subspaces, and then outliers are identified in the projected subspaces using some classical outlier detection techniques such as distance-based and density-based algorithms. Comprehensive case studies are conducted using various types of subspace clustering and outlier detection algorithms. The experimental results demonstrate that the proposed method can detect outliers effectively and efficiently in high dimensional data sets

    Coping with new Challenges in Clustering and Biomedical Imaging

    Get PDF
    The last years have seen a tremendous increase of data acquisition in different scientific fields such as molecular biology, bioinformatics or biomedicine. Therefore, novel methods are needed for automatic data processing and analysis of this large amount of data. Data mining is the process of applying methods like clustering or classification to large databases in order to uncover hidden patterns. Clustering is the task of partitioning points of a data set into distinct groups in order to minimize the intra cluster similarity and to maximize the inter cluster similarity. In contrast to unsupervised learning like clustering, the classification problem is known as supervised learning that aims at the prediction of group membership of data objects on the basis of rules learned from a training set where the group membership is known. Specialized methods have been proposed for hierarchical and partitioning clustering. However, these methods suffer from several drawbacks. In the first part of this work, new clustering methods are proposed that cope with problems from conventional clustering algorithms. ITCH (Information-Theoretic Cluster Hierarchies) is a hierarchical clustering method that is based on a hierarchical variant of the Minimum Description Length (MDL) principle which finds hierarchies of clusters without requiring input parameters. As ITCH may converge only to a local optimum we propose GACH (Genetic Algorithm for Finding Cluster Hierarchies) that combines the benefits from genetic algorithms with information-theory. In this way the search space is explored more effectively. Furthermore, we propose INTEGRATE a novel clustering method for data with mixed numerical and categorical attributes. Supported by the MDL principle our method integrates the information provided by heterogeneous numerical and categorical attributes and thus naturally balances the influence of both sources of information. A competitive evaluation illustrates that INTEGRATE is more effective than existing clustering methods for mixed type data. Besides clustering methods for single data objects we provide a solution for clustering different data sets that are represented by their skylines. The skyline operator is a well-established database primitive for finding database objects which minimize two or more attributes with an unknown weighting between these attributes. In this thesis, we define a similarity measure, called SkyDist, for comparing skylines of different data sets that can directly be integrated into different data mining tasks such as clustering or classification. The experiments show that SkyDist in combination with different clustering algorithms can give useful insights into many applications. In the second part, we focus on the analysis of high resolution magnetic resonance images (MRI) that are clinically relevant and may allow for an early detection and diagnosis of several diseases. In particular, we propose a framework for the classification of Alzheimer's disease in MR images combining the data mining steps of feature selection, clustering and classification. As a result, a set of highly selective features discriminating patients with Alzheimer and healthy people has been identified. However, the analysis of the high dimensional MR images is extremely time-consuming. Therefore we developed JGrid, a scalable distributed computing solution designed to allow for a large scale analysis of MRI and thus an optimized prediction of diagnosis. In another study we apply efficient algorithms for motif discovery to task-fMRI scans in order to identify patterns in the brain that are characteristic for patients with somatoform pain disorder. We find groups of brain compartments that occur frequently within the brain networks and discriminate well among healthy and diseased people

    Image mining: issues, frameworks and techniques

    Get PDF
    [Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in significantly large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. Despite the development of many applications and algorithms in the individual research fields cited above, research in image mining is still in its infancy. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining at the end of this paper

    An information-driven framework for image mining

    Get PDF
    [Abstract]: Image mining systems that can automatically extract semantically meaningful information (knowledge) from image data are increasingly in demand. The fundamental challenge in image mining is to determine how low-level, pixel representation contained in a raw image or image sequence can be processed to identify high-level spatial objects and relationships. To meet this challenge, we propose an efficient information-driven framework for image mining. We distinguish four levels of information: the Pixel Level, the Object Level, the Semantic Concept Level, and the Pattern and Knowledge Level. High-dimensional indexing schemes and retrieval techniques are also included in the framework to support the flow of information among the levels. We believe this framework represents the first step towards capturing the different levels of information present in image data and addressing the issues and challenges of discovering useful patterns/knowledge from each level
    • 

    corecore