13,684 research outputs found

    Partially ordered distributed computations on asynchronous point-to-point networks

    Full text link
    Asynchronous executions of a distributed algorithm differ from each other due to the nondeterminism in the order in which the messages exchanged are handled. In many situations of interest, the asynchronous executions induced by restricting nondeterminism are more efficient, in an application-specific sense, than the others. In this work, we define partially ordered executions of a distributed algorithm as the executions satisfying some restricted orders of their actions in two different frameworks, those of the so-called event- and pulse-driven computations. The aim of these restrictions is to characterize asynchronous executions that are likely to be more efficient for some important classes of applications. Also, an asynchronous algorithm that ensures the occurrence of partially ordered executions is given for each case. Two of the applications that we believe may benefit from the restricted nondeterminism are backtrack search, in the event-driven case, and iterative algorithms for systems of linear equations, in the pulse-driven case

    VCube-PS: A Causal Broadcast Topic-based Publish/Subscribe System

    Get PDF
    In this work we present VCube-PS, a topic-based Publish/Subscribe system built on the top of a virtual hypercube-like topology. Membership information and published messages are broadcast to subscribers (members) of a topic group over dynamically built spanning trees rooted at the publisher. For a given topic, the delivery of published messages respects the causal order. VCube-PS was implemented on the PeerSim simulator, and experiments are reported including a comparison with the traditional Publish/Subscribe approach that employs a single rooted static spanning-tree for message distribution. Results confirm the efficiency of VCube-PS in terms of scalability, latency, number and size of messages.Comment: Improved text and performance evaluation. Added proof for the algorithms (Section 3.4

    Update Consistency for Wait-free Concurrent Objects

    Get PDF
    In large scale systems such as the Internet, replicating data is an essential feature in order to provide availability and fault-tolerance. Attiya and Welch proved that using strong consistency criteria such as atomicity is costly as each operation may need an execution time linear with the latency of the communication network. Weaker consistency criteria like causal consistency and PRAM consistency do not ensure convergence. The different replicas are not guaranteed to converge towards a unique state. Eventual consistency guarantees that all replicas eventually converge when the participants stop updating. However, it fails to fully specify the semantics of the operations on shared objects and requires additional non-intuitive and error-prone distributed specification techniques. This paper introduces and formalizes a new consistency criterion, called update consistency, that requires the state of a replicated object to be consistent with a linearization of all the updates. In other words, whereas atomicity imposes a linearization of all of the operations, this criterion imposes this only on updates. Consequently some read operations may return out-dated values. Update consistency is stronger than eventual consistency, so we can replace eventually consistent objects with update consistent ones in any program. Finally, we prove that update consistency is universal, in the sense that any object can be implemented under this criterion in a distributed system where any number of nodes may crash.Comment: appears in International Parallel and Distributed Processing Symposium, May 2015, Hyderabad, Indi

    Programming with process groups: Group and multicast semantics

    Get PDF
    Process groups are a natural tool for distributed programming and are increasingly important in distributed computing environments. Discussed here is a new architecture that arose from an effort to simplify Isis process group semantics. The findings include a refined notion of how the clients of a group should be treated, what the properties of a multicast primitive should be when systems contain large numbers of overlapping groups, and a new construct called the causality domain. A system based on this architecture is now being implemented in collaboration with the Chorus and Mach projects

    A Configurable Transport Layer for CAF

    Full text link
    The message-driven nature of actors lays a foundation for developing scalable and distributed software. While the actor itself has been thoroughly modeled, the message passing layer lacks a common definition. Properties and guarantees of message exchange often shift with implementations and contexts. This adds complexity to the development process, limits portability, and removes transparency from distributed actor systems. In this work, we examine actor communication, focusing on the implementation and runtime costs of reliable and ordered delivery. Both guarantees are often based on TCP for remote messaging, which mixes network transport with the semantics of messaging. However, the choice of transport may follow different constraints and is often governed by deployment. As a first step towards re-architecting actor-to-actor communication, we decouple the messaging guarantees from the transport protocol. We validate our approach by redesigning the network stack of the C++ Actor Framework (CAF) so that it allows to combine an arbitrary transport protocol with additional functions for remote messaging. An evaluation quantifies the cost of composability and the impact of individual layers on the entire stack

    A Dual Digraph Approach for Leaderless Atomic Broadcast (Extended Version)

    Full text link
    Many distributed systems work on a common shared state; in such systems, distributed agreement is necessary for consistency. With an increasing number of servers, these systems become more susceptible to single-server failures, increasing the relevance of fault-tolerance. Atomic broadcast enables fault-tolerant distributed agreement, yet it is costly to solve. Most practical algorithms entail linear work per broadcast message. AllConcur -- a leaderless approach -- reduces the work, by connecting the servers via a sparse resilient overlay network; yet, this resiliency entails redundancy, limiting the reduction of work. In this paper, we propose AllConcur+, an atomic broadcast algorithm that lifts this limitation: During intervals with no failures, it achieves minimal work by using a redundancy-free overlay network. When failures do occur, it automatically recovers by switching to a resilient overlay network. In our performance evaluation of non-failure scenarios, AllConcur+ achieves comparable throughput to AllGather -- a non-fault-tolerant distributed agreement algorithm -- and outperforms AllConcur, LCR and Libpaxos both in terms of throughput and latency. Furthermore, our evaluation of failure scenarios shows that AllConcur+'s expected performance is robust with regard to occasional failures. Thus, for realistic use cases, leveraging redundancy-free distributed agreement during intervals with no failures improves performance significantly.Comment: Overview: 24 pages, 6 sections, 3 appendices, 8 figures, 3 tables. Modifications from previous version: extended the evaluation of AllConcur+ with a simulation of a multiple datacenters deploymen
    • 

    corecore