3,915 research outputs found

    An Efficient Algorithm for Automatic Structure Optimization in X-ray Standing-Wave Experiments

    Full text link
    X-ray standing-wave photoemission experiments involving multilayered samples are emerging as unique probes of the buried interfaces that are ubiquitous in current device and materials research. Such data require for their analysis a structure optimization process comparing experiment to theory that is not straightforward. In this work, we present a new computer program for optimizing the analysis of standing-wave data, called SWOPT, that automates this trial-and-error optimization process. The program includes an algorithm that has been developed for computationally expensive problems: so-called black-box simulation optimizations. It also includes a more efficient version of the Yang X-ray Optics Program (YXRO) [Yang, S.-H., Gray, A.X., Kaiser, A.M., Mun, B.S., Sell, B.C., Kortright, J.B., Fadley, C.S., J. Appl. Phys. 113, 1 (2013)] which is about an order of magnitude faster than the original version. Human interaction is not required during optimization. We tested our optimization algorithm on real and hypothetical problems and show that it finds better solutions significantly faster than a random search approach. The total optimization time ranges, depending on the sample structure, from minutes to a few hours on a modern laptop computer, and can be up to 100x faster than a corresponding manual optimization. These speeds make the SWOPT program a valuable tool for realtime analyses of data during synchrotron experiments

    Causal Discovery with Continuous Additive Noise Models

    Get PDF
    We consider the problem of learning causal directed acyclic graphs from an observational joint distribution. One can use these graphs to predict the outcome of interventional experiments, from which data are often not available. We show that if the observational distribution follows a structural equation model with an additive noise structure, the directed acyclic graph becomes identifiable from the distribution under mild conditions. This constitutes an interesting alternative to traditional methods that assume faithfulness and identify only the Markov equivalence class of the graph, thus leaving some edges undirected. We provide practical algorithms for finitely many samples, RESIT (Regression with Subsequent Independence Test) and two methods based on an independence score. We prove that RESIT is correct in the population setting and provide an empirical evaluation

    Forward Flux Sampling for rare event simulations

    Full text link
    Rare events are ubiquitous in many different fields, yet they are notoriously difficult to simulate because few, if any, events are observed in a conventiona l simulation run. Over the past several decades, specialised simulation methods have been developed to overcome this problem. We review one recently-developed class of such methods, known as Forward Flux Sampling. Forward Flux Sampling uses a series of interfaces between the initial and final states to calculate rate constants and generate transition paths, for rare events in equilibrium or nonequilibrium systems with stochastic dynamics. This review draws together a number of recent advances, summarizes several applications of the method and highlights challenges that remain to be overcome.Comment: minor typos in the manuscript. J.Phys.:Condensed Matter (accepted for publication

    Gamma-based clustering via ordered means with application to gene-expression analysis

    Full text link
    Discrete mixture models provide a well-known basis for effective clustering algorithms, although technical challenges have limited their scope. In the context of gene-expression data analysis, a model is presented that mixes over a finite catalog of structures, each one representing equality and inequality constraints among latent expected values. Computations depend on the probability that independent gamma-distributed variables attain each of their possible orderings. Each ordering event is equivalent to an event in independent negative-binomial random variables, and this finding guides a dynamic-programming calculation. The structuring of mixture-model components according to constraints among latent means leads to strict concavity of the mixture log likelihood. In addition to its beneficial numerical properties, the clustering method shows promising results in an empirical study.Comment: Published in at http://dx.doi.org/10.1214/10-AOS805 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore