3,932 research outputs found

    PKI Interoperability: Still an Issue? A Solution in the X. 509 Realm

    Get PDF
    There exist many obstacles that slow the global adoption of public key infrastructure (PKI) technology. The PKI interoperability problem, being poorly understood, is one of the most confusing. In this paper, we clarify the PKI interoperability issue by exploring both the juridical and technical domains. We demonstrate the origin of the PKI interoperability problem by determining its root causes, the latter being legal, organizational and technical differences between countries, which mean that relying parties have no one to rely on. We explain how difficult it is to harmonize them. Finally, we propose to handle the interoperability problem from the trust management point of view, by introducing the role of a trust broker which is in charge of helping relying parties make informed decisions about X.509 certificates

    Solutions and Tools for Secure Communication in Wireless Sensor Networks

    Get PDF
    Secure communication is considered a vital requirement in Wireless Sensor Network (WSN) applications. Such a requirement embraces different aspects, including confidentiality, integrity and authenticity of exchanged information, proper management of security material, and effective prevention and reaction against security threats and attacks. However, WSNs are mainly composed of resource-constrained devices. That is, network nodes feature reduced capabilities, especially in terms of memory storage, computing power, transmission rate, and energy availability. As a consequence, assuring secure communication in WSNs results to be more difficult than in other kinds of network. In fact, trading effectiveness of adopted solutions with their efficiency becomes far more important. In addition, specific device classes or technologies may require to design ad hoc security solutions. Also, it is necessary to efficiently manage security material, and dynamically cope with changes of security requirements. Finally, security threats and countermeasures have to be carefully considered since from the network design phase. This Ph.D. dissertion considers secure communication in WSNs, and provides the following contributions. First, we provide a performance evaluation of IEEE 802.15.4 security services. Then, we focus on the ZigBee technology and its security services, and propose possible solutions to some deficiencies and inefficiencies. Second, we present HISS, a highly scalable and efficient key management scheme, able to contrast collusion attacks while displaying a graceful degradation of performance. Third, we present STaR, a software component for WSNs that secures multiple traffic flows at the same time. It is transparent to the application, and provides runtime reconfigurability, thus coping with dynamic changes of security requirements. Finally, we describe ASF, our attack simulation framework for WSNs. Such a tool helps network designers to quantitatively evaluate effects of security attacks, produce an attack ranking based on their severity, and thus select the most appropriate countermeasures

    Security in Pervasive Computing: Current Status and Open Issues

    Get PDF
    Million of wireless device users are ever on the move, becoming more dependent on their PDAs, smart phones, and other handheld devices. With the advancement of pervasive computing, new and unique capabilities are available to aid mobile societies. The wireless nature of these devices has fostered a new era of mobility. Thousands of pervasive devices are able to arbitrarily join and leave a network, creating a nomadic environment known as a pervasive ad hoc network. However, mobile devices have vulnerabilities, and some are proving to be challenging. Security in pervasive computing is the most critical challenge. Security is needed to ensure exact and accurate confidentiality, integrity, authentication, and access control, to name a few. Security for mobile devices, though still in its infancy, has drawn the attention of various researchers. As pervasive devices become incorporated in our day-to-day lives, security will increasingly becoming a common concern for all users - - though for most it will be an afterthought, like many other computing functions. The usability and expansion of pervasive computing applications depends greatly on the security and reliability provided by the applications. At this critical juncture, security research is growing. This paper examines the recent trends and forward thinking investigation in several fields of security, along with a brief history of previous accomplishments in the corresponding areas. Some open issues have been discussed for further investigation

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Cryptographic protection for military radio communications

    Get PDF
    Protecting the confidentiality, integrity and availability of information is very important in any telecommunications system. Information protection requires use of necessary physical, personal, information and communication technologies and above all – electromagnetic and cryptographic security measures. Equipment and tools for cryptographic protection should be examined and assessed in terms of resistance to known threats. Additional requirements are put on information protection for radio communication, especially military, where radio transmission is characterized by uncertainty of establishing and maintaining connections, bit rates are relatively low, often without full duplex. All this has an impact on the methods of cryptographic synchronization and implementation of cryptographic functions. A different approach to information protection is required by classic narrowband radio communications, a different one in time-division multi-access modes, and another one in broadband packet data transmission. Systems designed for information protection in radio communications implement appropriate operating modes of operation for cryptographic algorithms and protocols. Latest threats from quantum computers pose new challenges, especially in systems using public-key cryptography, because there are algorithms that can be used to attack these schemes with polynomial complexity

    Key Management for Secure Power SCADA

    Get PDF
    This thesis proposes a key management protocol for secure power SCADA systems that seeks to take advantage of the full security capacity of a given network by allowing devices to use public key cryptography for key management if they are capable of doing so and reverting to symmetric key cryptography only when such use is necessitated by the weakness of a given device. Allowing devices to obtain different levels of security permits SCADA networks to maximize their security in the decades before such networks are capable of implementing fully public key-based key management protocols. Such a system is obtained through the use of a protocol based on a modified version of SSL using X.509 certificates containing encrypted symmetric keys that allow master devices the option of using the symmetric keys for encrypting the shared secret used to create keying material, instead of using a slave device\u27s public key. This thesis presents the protocol and uses proof-of-concept code to carry out a performance evaluation of the key management scheme
    corecore