1,148 research outputs found

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    BECSI: Bandwidth Efficient Certificate Status Information Distribution Mechanism for VANETs

    Get PDF

    An Implementation of Digital Signature and Key Agreement on IEEE802.15.4 WSN Embedded Device

    Get PDF
    A wireless sensor network (WSN) now becomes popular in context awareness development to distribute critical information and provide knowledge services to everyone at anytime and anywhere. However, the data transfer in a WSN potentially encounters many threats and attacks. Hence, particular security schemes are required to prevent them. A WSN usually uses low power, low performance, and limited resources devices. One of the most promising alternatives to public key cryptosystems is Elliptic Curve Cryptography (ECC), due to it pledges smaller keys size. This implies the low cost consumption to calculate arithmetic operations in cryptographic schemes and protocols. Therefore, ECC would be strongly required to be implemented in WSN embedded devices with limited resources (i.e., processor speed, memory, and storage). In this paper, we present an implementation of security system on IEEE802.15.4 WSN device with the employment of Elliptic Curve Digital Signature Algorithm (ECDSA) and Elliptic Curve Diffie-Hellman (ECDH) key exchange protocol. Our experimental results on Intel Mote2 showed that the total time for signature generation is 110 ms, signature verification is 134 ms, and ECDH shared key generation is 69 ms on the setting of 160-bit security level
    • …
    corecore