5,412 research outputs found

    A Hierarchical Approach for Dynamic Fault Trees Solution Through Semi-Markov Process

    Get PDF
    Dynamic fault tree (DFT) is a top-down deductive technique extended to model systems with complex failure behaviors and interactions. In two last decades, different methods have been applied to improve its capabilities, such as computational complexity reduction, modularization, intricate failure distribution, and reconfiguration. This paper uses semi-Markov process (SMP) theorem for DFT solution with the motivation of obviating the model state-explosion, considering nonexponential failure distribution through a hierarchical solution. In addition, in the proposed method, a universal SMP for static and dynamic gates is introduced, which can generalize dynamic behaviors like functional dependencies, sequences, priorities, and spares in a single model. The efficiency of the method regarding precision and competitiveness with commercial tools, repeated events consideration, computational complexity reduction, nonexponential failure distribution consideration, and repairable events in DFT is studied by a number of examples, and the results are then compared to those of the selected existing methods

    Fault Tree Analysis: a survey of the state-of-the-art in modeling, analysis and tools

    Get PDF
    Fault tree analysis (FTA) is a very prominent method to analyze the risks related to safety and economically critical assets, like power plants, airplanes, data centers and web shops. FTA methods comprise of a wide variety of modelling and analysis techniques, supported by a wide range of software tools. This paper surveys over 150 papers on fault tree analysis, providing an in-depth overview of the state-of-the-art in FTA. Concretely, we review standard fault trees, as well as extensions such as dynamic FT, repairable FT, and extended FT. For these models, we review both qualitative analysis methods, like cut sets and common cause failures, and quantitative techniques, including a wide variety of stochastic methods to compute failure probabilities. Numerous examples illustrate the various approaches, and tables present a quick overview of results
    corecore