523 research outputs found

    Testing BOI and BOB algorithms for solving the Winner Determination

    Get PDF
    Eighth International Conference on Hybrid Intelligent Systems, 2008. HIS '08. Barcelona, 10-12 September 2008Combinatorial auctions are a promising auction format for allocating radio spectrum, as well as other goods. An important handicap of combinatorial auctions is determining the winner bids among many options, that is, solving the winner determination problem (WDP). This paper tackles this computational problem using two approaches in a combinatorial first-price sealed bid auction. The first one, is an A* based on items (BOI). The second one, is an A* based on bids (BOB). These two techniques are tested in several scenarios for allocating radio spectrum licenses. The results obtained reveal that the search algorithm A* with the BOB formulation outperforms the other and always finds the optimal solution very quickly

    An Agent Based Market Design Methodology for Combinatorial Auctions

    Get PDF
    Auction mechanisms have attracted a great deal of interest and have been used in diverse e-marketplaces. In particular, combinatorial auctions have the potential to play an important role in electronic transactions. Therefore, diverse combinatorial auction market types have been proposed to satisfy market needs. These combinatorial auction types have diverse market characteristics, which require an effective market design approach. This study proposes a comprehensive and systematic market design methodology for combinatorial auctions based on three phases: market architecture design, auction rule design, and winner determination design. A market architecture design is for designing market architecture types by Backward Chain Reasoning. Auction rules design is to design transaction rules for auctions. The specific auction process type is identified by the Backward Chain Reasoning process. Winner determination design is about determining the decision model for selecting optimal bids and auctioneers. Optimization models are identified by Forward Chain Reasoning. Also, we propose an agent based combinatorial auction market design system using Backward and Forward Chain Reasoning. Then we illustrate a design process for the general n-bilateral combinatorial auction market. This study serves as a guideline for practical implementation of combinatorial auction markets design.Combinatorial Auction, Market Design Methodology, Market Architecture Design, Auction Rule Design, Winner Determination Design, Agent-Based System

    Parallel Greedy Approximation on Large-Scale Combinatorial Auctions

    Get PDF

    Fair Payments for Efficient Allocations in Public Sector Combinatorial Auctions

    Get PDF
    Motivated by the increasing use of auctions by government agencies, we consider the problem of fairly pricing public goods in a combinatorial auction. A well-known problem with the incentive-compatible Vickrey-Clarke-Groves (VCG) auction mechanism is that the resulting prices may not be in the core. Loosely speaking, this means the payments of the winners could be so low, that there are losing bidders who would have been willing to pay more than the payments of the winning bidders. Clearly, this ``unfair\u27\u27 outcome is unacceptable for a public-sector auction. Proxy-based combinatorial auctions, in which each bidder submits several package bids to a proxy, result in efficient outcomes and bidder-Pareto-optimal core-payments by winners, thus offering a viable practical alternative to address this problem. This paper confronts two critical issues facing the proxy-auction. First, motivated to minimize a bidder\u27s ability to benefit through strategic manipulation (through collusive agreement or unilateral action), we demonstrate the strength of a mechanism that minimizes total payments among all possible proxy auction outcomes, narrowing the previously broad solution concept. Secondly, we address the computational difficulties of achieving these outcomes with a constraint-generation approach, promising to broaden the range of applications for which the proxy-auction achieves a comfortably rapid solution

    Combinatorial auctions for electronic business

    Get PDF
    Combinatorial auctions (CAs) have recently generated significant interest as an automated mechanism for buying and selling bundles of goods. They are proving to be extremely useful in numerous e-business applications such as e-selling, e-procurement, e-logistics, and B2B exchanges. In this article, we introduce combinatorial auctions and bring out important issues in the design of combinatorial auctions. We also highlight important contributions in current research in this area. This survey emphasizes combinatorial auctions as applied to electronic business situations
    corecore