61,343 research outputs found

    An efficient approach to model-based hierarchical reinforcement learning

    Get PDF
    National Research Foundation (NRF) Singapore under SMART and Future Mobility; Ministry of Education, Singapore under its Academic Research Funding Tier

    DeepLine: AutoML Tool for Pipelines Generation using Deep Reinforcement Learning and Hierarchical Actions Filtering

    Full text link
    Automatic machine learning (AutoML) is an area of research aimed at automating machine learning (ML) activities that currently require human experts. One of the most challenging tasks in this field is the automatic generation of end-to-end ML pipelines: combining multiple types of ML algorithms into a single architecture used for end-to-end analysis of previously-unseen data. This task has two challenging aspects: the first is the need to explore a large search space of algorithms and pipeline architectures. The second challenge is the computational cost of training and evaluating multiple pipelines. In this study we present DeepLine, a reinforcement learning based approach for automatic pipeline generation. Our proposed approach utilizes an efficient representation of the search space and leverages past knowledge gained from previously-analyzed datasets to make the problem more tractable. Additionally, we propose a novel hierarchical-actions algorithm that serves as a plugin, mediating the environment-agent interaction in deep reinforcement learning problems. The plugin significantly speeds up the training process of our model. Evaluation on 56 datasets shows that DeepLine outperforms state-of-the-art approaches both in accuracy and in computational cost

    Learning Representations in Model-Free Hierarchical Reinforcement Learning

    Full text link
    Common approaches to Reinforcement Learning (RL) are seriously challenged by large-scale applications involving huge state spaces and sparse delayed reward feedback. Hierarchical Reinforcement Learning (HRL) methods attempt to address this scalability issue by learning action selection policies at multiple levels of temporal abstraction. Abstraction can be had by identifying a relatively small set of states that are likely to be useful as subgoals, in concert with the learning of corresponding skill policies to achieve those subgoals. Many approaches to subgoal discovery in HRL depend on the analysis of a model of the environment, but the need to learn such a model introduces its own problems of scale. Once subgoals are identified, skills may be learned through intrinsic motivation, introducing an internal reward signal marking subgoal attainment. In this paper, we present a novel model-free method for subgoal discovery using incremental unsupervised learning over a small memory of the most recent experiences (trajectories) of the agent. When combined with an intrinsic motivation learning mechanism, this method learns both subgoals and skills, based on experiences in the environment. Thus, we offer an original approach to HRL that does not require the acquisition of a model of the environment, suitable for large-scale applications. We demonstrate the efficiency of our method on two RL problems with sparse delayed feedback: a variant of the rooms environment and the first screen of the ATARI 2600 Montezuma's Revenge game
    • …
    corecore