24,490 research outputs found

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea

    Array of sensors: A spatiotemporal-state-space model for target trajectory tracking

    Get PDF
    In this paper, with the objective of tracking the trajectory of multiple mobile targets, a novel spatiotemporal-state-space model is introduced for an array of sensors distributed in space. Under the wideband assumption, the proposed model incorporates the array geometry in conjunction with crucial target parameters namely (i) ranges, (ii) directions, (iii) velocities and (iv) associated Doppler effects. Computer simulation studies show some representative examples where the proposed model is utilised to track the locations of sources in space with a very high accuracy

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Intrusion Detection Systems for Community Wireless Mesh Networks

    Get PDF
    Wireless mesh networks are being increasingly used to provide affordable network connectivity to communities where wired deployment strategies are either not possible or are prohibitively expensive. Unfortunately, computer networks (including mesh networks) are frequently being exploited by increasingly profit-driven and insidious attackers, which can affect their utility for legitimate use. In response to this, a number of countermeasures have been developed, including intrusion detection systems that aim to detect anomalous behaviour caused by attacks. We present a set of socio-technical challenges associated with developing an intrusion detection system for a community wireless mesh network. The attack space on a mesh network is particularly large; we motivate the need for and describe the challenges of adopting an asset-driven approach to managing this space. Finally, we present an initial design of a modular architecture for intrusion detection, highlighting how it addresses the identified challenges

    Online advertising: analysis of privacy threats and protection approaches

    Get PDF
    Online advertising, the pillar of the “free” content on the Web, has revolutionized the marketing business in recent years by creating a myriad of new opportunities for advertisers to reach potential customers. The current advertising model builds upon an intricate infrastructure composed of a variety of intermediary entities and technologies whose main aim is to deliver personalized ads. For this purpose, a wealth of user data is collected, aggregated, processed and traded behind the scenes at an unprecedented rate. Despite the enormous value of online advertising, however, the intrusiveness and ubiquity of these practices prompt serious privacy concerns. This article surveys the online advertising infrastructure and its supporting technologies, and presents a thorough overview of the underlying privacy risks and the solutions that may mitigate them. We first analyze the threats and potential privacy attackers in this scenario of online advertising. In particular, we examine the main components of the advertising infrastructure in terms of tracking capabilities, data collection, aggregation level and privacy risk, and overview the tracking and data-sharing technologies employed by these components. Then, we conduct a comprehensive survey of the most relevant privacy mechanisms, and classify and compare them on the basis of their privacy guarantees and impact on the Web.Peer ReviewedPostprint (author's final draft
    corecore